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ABSTRACT 

In robotic systems, the challenge of defective image anomaly detection in multimodal 

environments has been a critical issue. Solving this problem holds significant implications for the 

environmental perception of mobile robots and product quality inspection for industrial robots. This 

study addresses this challenge by proposing a multimodal robot image anomaly detection model for 

images with defects, integrating multimodal fusion attention networks, generative adversarial 

networks, and fully connected networks. By comprehensively considering various perceptual 

modalities such as images, texts, and sounds, the model efficiently captures crucial information, 

enhancing the precision and robustness of anomaly detection. Through detailed experimental 

validation, our model significantly improves accuracy, recall, precision, AUC, and F1-score metrics. 

The results demonstrate that the proposed GA-MMA-FCN model provides an efficient and reliable 

solution for robot image anomaly detection in multimodal environments, offering crucial support for 

practical applications in robotic systems. 
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1. Introduction 

Research on robot image anomaly detection [1] holds paramount significance in robotics and 

computer vision. Ensuring the reliability and safety of robotic systems is essential, particularly in 

industrial and critical applications. By developing advanced anomaly detection models [2], this 

research enables the identification of irregularities or defects in robot-captured images, facilitating 

early diagnosis of faults or damages. Such timely detection is pivotal in industrial automation, 

ensuring efficient manufacturing processes and reducing downtimes, thus leading to substantial cost 

savings [3]. Moreover, in applications like autonomous vehicles [4]or robotic surgeries [5], where 

human lives are at stake, accurate anomaly detection becomes a life-saving technology, ensuring real-

time responses to unexpected situations. Consequently, research outcomes in robot image anomaly 

detection are pivotal for various industries, paving the way for safer, more efficient, and adaptive 

robotic technologies that can operate seamlessly in complex and unpredictable environments.  

The application of multimodal deep learning [6] in image anomaly detection constitutes a 

significant advancement in computer vision. By integrating information from diverse modalities such 

as images, texts, and sensor data, multimodal deep-learning models offer a holistic understanding of 

complex scenes, allowing for more accurate and robust anomaly detection. This approach overcomes 

the limitations of unimodal methods, where singular data sources might lack comprehensive context. 
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In industrial contexts, where multiple sensor modalities [7] are often available, multimodal deep 

learning enables a thorough analysis of the environment, enhancing the detection of subtle anomalies 

that individual sensors might overlook. Furthermore, multimodal deep learning fosters a synergistic 

fusion of heterogeneous data, enabling enhanced feature extraction and representation learning [8]. 

The fusion of modalities enriches the feature space and provides a more nuanced understanding of 

the data, capturing intricate patterns and correlations essential for accurate anomaly detection. This 

comprehensive feature representation, derived from multiple modalities, significantly improves the 

model's ability to discern anomalies from normal patterns, leading to higher detection accuracy and 

lower false-positive rates. In addition to industrial applications, multimodal deep learning finds 

significant relevance in domains such as healthcare [9], autonomous systems [10], and security [11]. 

For instance, combining information from medical images, patient records, and sensor data can lead 

to more precise anomaly detection, aiding in early disease diagnosis and treatment planning [12]. In 

autonomous systems like self-driving cars, fusing data from cameras, LIDAR, and radar sensors 

enables robust anomaly detection on the road, enhancing the safety of autonomous vehicles [13]. The 

research in multimodal deep learning for image anomaly detection advances the capabilities of 

anomaly detection systems. It contributes to the broader field of artificial intelligence by addressing 

complex, real-world problems involving diverse data sources. Consequently, integrating multimodal 

deep learning techniques into image anomaly detection research holds immense scholarly and 

practical significance, paving the way for more sophisticated, adaptable, and accurate anomaly 

detection systems applicable across various domains. The deep learning models commonly used in 

the research on robot image anomaly detection are as follows: 

Multimodal Variational Autoencoder (MVAE) [14]: MVAE can handle data from various sensors, 

such as vision and sound. Through the structure of the Variational Autoencoder, it can learn the latent 

distribution of each sensor modality, capturing features of anomalous events in the robot's 

environment more effectively. Its latent space structure enhances the accuracy and interpretability of 

anomaly detection. 

Multimodal Generative Adversarial Network (MGAN) [15]: MGAN generates more realistic 

multimodal data by employing the Generative Adversarial Network structure. Simultaneously, it 

learns the features of anomalous events. In the context of robot image anomaly detection, MGAN can 

generate multimodal anomalous data, facilitating the model's better understanding of anomalous 

patterns. 

Multimodal Recurrent Neural Network (MRNN) [16]: MRNN combines Recurrent Neural 

Networks with multimodal data and is suitable for handling sequential anomalous data. In robotics, 

temporal information often contains rich context and correlations. MRNN effectively utilizes this 

information, enhancing the accuracy of anomaly detection. 

Cross-Modal Neural Networks (CMNN) [17]: CMNN introduces cross-modal loss functions, 

encouraging feature learning and exchange between sensor modalities. In the context of robot image 

anomaly detection, CMNN captures the relationships between images and other sensor data (such as 

depth sensors), improving the robustness of anomaly detection. 

Tensor Fusion Networks (TFN) [18]: TFN uses tensor decomposition methods and handles high-

order multimodal data. In robot image anomaly detection, TFN considers the high-order correlations 

among multiple sensor data, effectively extracting features and enhancing the precision and 

generalization of anomaly detection. 

This paper proposes a method combining a range of deep learning models for solving the robot 

image anomaly detection problem with multimodal cues under partial image defects. First, defective 

images are completed using Generative Adversarial Networks (GAN) [19]. Subsequently, 
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Convolutional Neural Networks (CNN) [20] are employed to extract visual features, Recurrent Neural 

Networks (RNN) [21] capture textual information, and one-dimensional Convolutional Neural 

Networks [22] extract sound features. These modality-specific features are then integrated through a 

dedicated fusion layer, effectively leveraging the unique advantages of each data type. Finally, a Fully 

Convolutional Network (FCN) [23] is applied for precise image anomaly detection. The model 

maximizes the potential of GAN for image completion, harnesses CNN's expertise in visual pattern 

recognition, utilizes RNN for contextual understanding of textual data, and benefits from the 

efficiency of one-dimensional CNN in sound feature extraction. The introduced fusion layer ensures 

a comprehensive representation of multimodal data, enhancing the model's capability to recognize 

intricate patterns. 

The three contribution points of this paper are as follows. 

1) This study introduces a novel approach for seamlessly integrating multi-modal sensor 

data collected by robots, including visual, textual, and auditory information. By leveraging the 

unique strengths of each sensor, visual data providing rich image details, textual data offering 

contextual descriptions, and auditory data capturing environmental sounds, the proposed model 

enables a comprehensive understanding of the robot's surroundings. This enhanced perception 

significantly improves the accuracy and robustness of anomaly detection across diverse robotic 

environments. 

2) The research employs Generative Adversarial Networks (GANs) to restore defective 

images intelligently. In robotic applications, image data may be compromised due to sensor 

malfunctions or occlusions. By effectively restoring these images, the study addresses the 

challenge of missing or corrupted data, ensuring the input information's completeness. This 

capability strengthens the robot’s environmental perception and supports more precise decision-

making. 

3) The study integrates deep learning models, including Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), to incorporate contextual information from 

multiple data modalities—images, text, and sound. Such contextual information is invaluable in 

robotic applications, as it can provide essential correlations and context. For instance, textual 

descriptions may help clarify image content, while auditory signals could offer insights into the 

surrounding environment. By effectively combining these diverse sources, the model gains a 

deeper, more holistic understanding of the scene, thereby improving its ability to detect complex 

anomaly patterns. 

In the rest of this paper, we will introduce the recently related work in section 2. Section 3 

presents the proposed methods: overview, GAN layer for image defect completion, multimodal data 

feature extraction layer, FCN layer for image anomaly detection and a multimodal attention 

mechanism. Section 4 introduces the experimental part, including practical details, comparative 

experiments, and an ablation study. Section 5 includes a conclusion. 

2. Related work 

2.1 Multimodal Image Anomaly Detection Model 

In the realm of robotics, the application of multimodal image anomaly detection [24] models 

offers a plethora of advantages, leveraging the integration of diverse sensory data to enhance robotic 

perception, decision-making, and adaptability in complex environments. First and foremost, these 
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models facilitate comprehensive perception by integrating information from various sensors such as 

visual cameras, microphones, and textual inputs. This amalgamation provides a holistic, 

multidimensional understanding of the surroundings, enabling robots to perceive intricate details and 

nuances in the environment. These models significantly contribute to enhanced robustness by 

capturing data from different modalities. Utilizing multimodal data ensures the system's stability in 

scenarios where one sensor modality may fail due to interference or noise. Redundancy across 

modalities guarantees that even if one source is compromised, other modalities can compensate, 

preserving the integrity of the perception system. The improved accuracy of anomaly detection is 

another notable advantage. These models access a richer information by fusing multimodal features, 

enabling more precise anomaly identification. The synthesis of diverse features enhances the 

discrimination power of the model, leading to lower false positive rates and increased overall 

detection accuracy. 

Additionally, multimodal models offer adaptive versatility by allowing robots to dynamically 

select and integrate sensor data based on task requirements and environmental conditions. This 

adaptability is crucial in real-world applications where the robot needs to handle diverse tasks in 

changing surroundings. 

Furthermore, these models enable robots to achieve a deeper contextual understanding. By 

combining textual information with visual and auditory data, the model gains insights into the 

semantic context of the scene. This semantic understanding is invaluable in human-robot interaction 

scenarios, where interpreting contextual cues is vital. Moreover, in dynamic environments, the ability 

to fuse temporal and spatial information across different modalities equips robots with the capability 

to track anomalies over time, enabling the prediction and proactive management of potential issues. 

However, several challenges and limitations remain. One significant drawback is the complexity 

involved in feature fusion. Integrating heterogeneous data from multiple modalities often requires 

sophisticated algorithms and strategies, making the fusion process computationally intensive. 

Achieving an optimal fusion scheme that maximizes the strengths of each modality while minimizing 

information loss presents a non-trivial challenge. Additionally, data misalignment and calibration 

discrepancies between different sensors can impede the accurate fusion of multimodal data. Variations 

in sensor technologies, resolutions, and calibration methods can lead to misalignments, affecting the 

quality of the fused features and, consequently, the performance of the anomaly detection system. 

Another limitation concerns the availability and quality of labeled data for training these multimodal 

models. Acquiring a diverse and comprehensive dataset that captures anomalies across various 

modalities is challenging. The scarcity of labeled data, especially in real-world, nuanced scenarios, 

can undermine the robustness and generalizability of the trained models. Furthermore, the 

interpretability and explainability of multimodal anomaly detection models remain critical issues. 

Understanding the decision-making process of these complex models, particularly when they are 

fused with multiple modalities, is essential, especially in applications where human intervention or 

oversight is necessary. 

2.2 Multimodal Attention Mechanisms 

Applying multimodal attention mechanisms [25] in robot image anomaly detection tasks brings 

significant advantages, offering a promising avenue for enhancing robotic perception and decision-

making capabilities in complex environments. One of the primary strengths lies in enhanced feature 

discrimination. Multimodal attention mechanisms enable the model to focus selectively on specific 

regions or modalities within the input data. By assigning varying levels of attention to different 

regions of the image, the model can prioritize relevant features, leading to more accurate anomaly 
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detection. This targeted attention enhances the model’s sensitivity to subtle abnormalities while 

filtering out irrelevant information, improving overall detection accuracy. 

Furthermore, these mechanisms contribute to contextual understanding. By incorporating 

attention mechanisms across multiple modalities, the model can capture intricate relationships 

between different parts of the input data. For instance, when analyzing an image, attention can be 

directed toward specific objects or regions of interest while simultaneously considering 

corresponding textual or auditory descriptions. This holistic understanding of multimodal context 

enables robots to interpret complex scenes more accurately, especially when anomalies might involve 

subtle interactions between different modalities. Another advantage lies in improved interpretability. 

Multimodal attention mechanisms provide insights into which parts of the input data are crucial for 

anomaly detection. Visualizing the attention weights allows human operators to understand which 

features the model prioritizes, aiding in post-analysis and decision validation. This interpretability is 

crucial for building trust in autonomous robotic systems, especially in applications where human 

oversight is essential. 

Additionally, these attention mechanisms enhance adaptability. The salient regions or modalities 

can change in dynamic environments based on contextual cues or task requirements. Multimodal 

attention mechanisms allow robots to adjust their focus, dynamically ensuring adaptability to different 

situations. This adaptability is particularly valuable in real-world applications where the nature of 

anomalies can vary widely. Moreover, multimodal attention mechanisms mitigate data imbalance 

issues. In scenarios where certain modalities might have limited data or experience imbalanced class 

distributions, attention mechanisms can help balance the model's focus, ensuring that anomalies from 

underrepresented modalities are not overlooked. 

But it also faces certain limitations. One prominent drawback is the increased computational 

complexity. Multimodal attention mechanisms involve intricate computations to align and fuse 

features from different modalities, demanding substantial computational resources. This complexity 

can hinder real-time processing, a crucial requirement for many robotic applications, especially those 

in dynamic environments. Another limitation is interpretability challenges. Multimodal attention 

mechanisms, especially in deep neural networks, often operate as complex, non-linear functions, 

making it challenging to interpret how the model arrives at its decisions. Understanding the rationale 

behind the attention weights is vital for building trust in autonomous systems, particularly in 

applications where human supervision and validation are necessary. 

Furthermore, these mechanisms are sensitive to hyperparameters, such as the weighting factors 

and network architectures. Fine-tuning these parameters for optimal performance across various tasks 

and datasets can be challenging and time-consuming. Moreover, the performance of multimodal 

attention models heavily relies on the quality and quantity of the training data, which might be limited 

or biased, leading to challenges in generalizability to diverse real-world scenarios. Additionally, 

multimodal attention models may face difficulties effectively handling temporal dynamics, especially 

in tasks where anomalies evolve over time. Capturing temporal dependencies across modalities while 

maintaining attentional focus poses a considerable challenge, limiting the model's effectiveness in 

scenarios requiring nuanced temporal anomaly detection. 

3. Method 

3.1 Overview 
In this study, we propose an innovative multimodal image anomaly detection model to enhance 

robotic systems' environmental perception and anomaly detection capabilities. The model first 
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employs Generative Adversarial Network (GAN) techniques for intelligent restoration of defective 

images, ensuring the integrity of input data. Subsequently, Convolutional Neural Networks (CNNs) 

are utilized for extracting image features, Recurrent Neural Networks (RNNs) for capturing textual 

information, and 1D Convolutional Neural Networks for extracting sound features. These three neural 

networks process information from image, text, and sound modalities, providing rich feature 

representations for subsequent multimodal fusion. At the multimodal fusion stage, we introduce 

attention mechanisms, enabling the model to selectively focus on the most relevant features in 

different modalities, thereby enhancing feature discriminability and detection accuracy. Following 

feature fusion, we employ Fully Convolutional Networks (FCNs) for image anomaly detection, 

identifying anomalous patterns by learning complex spatial features. The overview of our framework 

is shown in the figure 1. 

 

Figure 1. Framework of GA-MMA-RNN model  

 

3.2 GAN Layer for Defective Image Reconstruction 

A Generative Adversarial Network (GAN) comprises a Generator and a Discriminator, forming 

a competitive model. The Generator attempts to produce realistic images, while the Discriminator 

aims to differentiate between generated and real images. This competitive training process compels 

the Generator to create increasingly realistic images while the Discriminator becomes more accurate 

at distinguishing authenticity. The details of the Gan-based robot image completion layer are 

described below. 

The objective function of GAN is defined as follows: 

ℒGAN(𝐺, 𝐷) = 𝔼𝐱∼𝑝data(𝐱)
[log⁡𝐷(𝐱)] + 𝔼𝐳∼𝑝𝐳(𝐳)[log⁡(1 − 𝐷(𝐺(𝐳)))].    [Formular 1] 

Here, 𝐺(𝐳) represents the output of the Generator, and 𝐳 is a noise vector sampled from a prior 

distribution. 𝑝𝐳(𝐳). The first term encourages the Discriminator to estimate the probability of real 

images close to 1. In contrast, the second term encourages the Discriminator to estimate the 

probability of generated images close to 0. 

The update rule for the Generator's parameters is given by: 

𝜃𝐺 ← 𝜃𝐺 − 𝜆 ⋅ ∇𝜃𝐺ℒGAN(𝐺, 𝐷)                  [Formular 2] 

This implies that the Generator's parameters 𝜃𝐺  are updated via gradient descent to enhance the 

Generator's ability to produce images that deceive the Discriminator. 

In our approach, the GAN layer generates highly realistic images through competitive training, 

filling the defects in robot images. The Generator learns to produce authentic-looking images, 
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ensuring the continuity and authenticity of the image in the defective regions. This process maintains 

the integrity of the image, providing reliable input data for subsequent analysis and decision-making. 

Therefore, the GAN layer is pivotal in completing robot image defects, ensuring subsequent 

operations on high-quality data. 

The structure of the GAN layer is shown in Figure 2. 

 

Figure 2. Structure of GAN layer in GA-MMA-RNN model 

3.3 Multimodal Data Feature Extraction Layer 

In our proposed algorithm, we employ three parallel neural network models to extract features 

from different modalities of data in the robot's environment. Specifically, a CNNs is utilized to extract 

visual features from the robot's environment images, a RNN is employed to capture textual 

information, and a 1D CNN is applied to extract acoustic features. These models run in parallel to 

process the multimodal data. 

Part 1: Visual Feature Extraction (CNN Model): We use a Convolutional Neural Network (CNN) 

to process the image data from the robot's environment. The CNN aims to learn features from images 

through multiple convolutional and pooling layers, capturing essential aspects such as edges, textures, 

and objects. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖𝑚𝑎𝑔𝑒 = 𝐶𝑁𝑁(𝐼𝑚𝑎𝑔𝑒)                [Formular 3] 

Here, Featuresimage  represents the extracted features from the robot's environment images, 

and Image denotes the input image data from the GAN layer. 

Part 2: Textual Feature Extraction (RNN Model): We utilize a Recurrent Neural Network (RNN) 

to process textual data from the robot's environment. The RNN is designed to capture sequential 

patterns and semantic relationships in text data, allowing the model to understand the context and 

meaning of textual information. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑡𝑒𝑥𝑡 = 𝑅𝑁𝑁(𝑇𝑒𝑥𝑡)                  [Formular 4] 

Here, Featurestext represents the extracted features from the robot's environment textual data, 

and Text represents the input text data. 

Part 3: Acoustic Feature Extraction (1D CNN Model): We employ a one-dimensional 

Convolutional Neural Network (1D CNN) to process acoustic data from the robot's environment. The 

1D CNN is designed to capture frequency domain features from sound signals, enabling the 

recognition of aspects such as tone, rhythm, and other acoustic characteristics. 
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑎𝑢𝑑𝑖𝑜 = 1𝐷⁡CNN(𝐴𝑢𝑑𝑖𝑜)               [Formular 5] 

Here, Featuresaudio  represents the extracted features from the robot's environment acoustic 

data, and 𝐴𝑢𝑑𝑖𝑜 represents the input sound data. 

This parallel processing approach allows us to extract distinct features from different modalities 

of data, enabling the robot system to understand the surrounding environment comprehensively. 

These extracted features can be utilized for various downstream tasks, such as multimodal fusion, 

anomaly detection, or decision-making processes, enhancing the intelligence and adaptability of the 

robot system in diverse environments. 

The structure of the multimodal data feature extraction layer is shown in Figure 3. 

 

(a) Image feature extraction 

 

(b) Text feature extraction 

 

(c) Audio feature extraction 

Figure 3. Structure of multimodal data feature extraction layer in GA-MMA-RNN model 

3.4 Multimodal Attention Mechanism for Multimodal Feature Fusion 

Step 1: Feature translation. 

I = Image Feature Representation                   [Formular 6] 

𝑇 = Text Feature Representation                   [Formular 7] 

𝐴 = Audio Feature Representation                  [Formular 8] 

This step transforms raw data into processable feature vectors, providing input for the 

subsequent multimodal attention mechanism. 

Step 2: Multimodal Attention Computation 

𝑀𝑖 = Image Attention Weight Calculation(𝐼)              [Formular 9] 

𝑀𝑡 = Text Attention Weight Calculation(𝑇)            [Formular 10] 

𝑀𝑎 = Audio Attention Weight Calculation(𝐴)            [Formular 11] 
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𝐹 = 𝑀𝑖 ⋅ 𝐼 + 𝑀𝑡 ⋅ 𝑇 + 𝑀𝑎 ⋅ 𝐴                     [Formular 12] 

𝑀𝑖, 𝑀𝑡, and 𝑀𝑎 are attention weights for image, text, and audio data. F is a fused multimodal 

feature vector. This step calculates Attention weights for image, text, and audio data. Different data 

types have varying significance in different contexts. By learning these attention weights, each data 

type's feature vector is linearly combined, resulting in a fused multimodal feature vector. This 

weighted fusion accounts for the contribution of each data type in anomaly detection, enhancing the 

model's flexibility and adaptability. 

The overview of the Multimodal attention mechanism is shown in Figure 4. 

 

Figure 4. Structure of Multimodal attention mechanism in GA-MMA-RNN model 

3.5 FCN Layer for Image Anomaly Detection 

Three types of features, image, text, and sound, are fused through the multimodal attention 

mechanism. Subsequently, the fused features are fed into an FCN for semantic analysis. 

The structure of the FCN layer is shown in Figure 5. 

 

Figure 5. Structure of FCN layer in GA-MMA-RNN model 

 

4. Experiment 

In this study, we conducted three key experiments to evaluate the performance and robustness 

of the proposed model comprehensively. The experimental section is detailed as follows. 
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4.1 Experimental Design 

Our experiments were divided into three stages: firstly, a multi-method comparison experiment 

was conducted on a single dataset to compare the anomaly detection performance of different methods, 

aiming to verify the performance of the GAN-MMA-FCN model. Subsequently, another multi-

method comparison experiment was performed on a different single dataset to assess the adaptability 

of GAN-MMA-FCN model in diverse dataset contexts. Finally, a model ablation experiment was 

conducted to systematically dissect the model's components, including feature selection and attention 

mechanisms, revealing the critical factors influencing model performance. 

The experiments were conducted on a high-performance computer with an NVIDIA GeForce 

RTX 3090 GPU. The operating system used was a Ubuntu Linux distribution. The deep learning 

framework employed was TensorFlow 2.0, and the experimental code was developed using the 

Python programming language. 

In our experiments, careful adjustments were made to the model's parameters. The learning rate 

was set to 0.001, the batch size was 32, and the number of neurons in the hidden layers was set to 

128. ReLU activation function and Adam optimizer were utilized. In the ablation experiments, certain 

model components, such as attention mechanisms, were gradually removed to evaluate their impact 

on model performance. 

Rigorous data preprocessing was applied during the experiments, including normalization, 

denoising, and balancing the sample distribution. Dropout layers were introduced to prevent 

overfitting, and data augmentation techniques such as random flips and rotations were applied to the 

training set. To ensure the stability of the experimental results, the experiments were independently 

run five times, and the averages were taken as the results. 

We comprehensively considered multiple evaluation metrics, including Accuracy and area under 

the curve (AUC). 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                   [Formular 13] 

 

, Recall: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                       [Formular 14] 

 

, Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                      [Formular 15] 

 

, F1-score: 

𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                    [Formular 16] 

Accuracy measures the overall prediction accuracy of the model, recall assesses the model's 

ability to detect true positive anomalies, and the F1-score balances precision and recall. AUC 

evaluates the model's performance at different thresholds, providing a comprehensive assessment. 

Through these evaluation metrics, we conducted a comprehensive and objective assessment of the 

proposed model's performance under different experimental conditions, supporting its reliability in 

practical applications. 
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4.2 Dataset 

The data in this article comes from MVTec AD Dataset [26], CURE-TSRD dataset [27], UCF-

Crime Dataset [28], Multimodal Indoor Dataset [29], and MERL Shopping Dataset [30]. 

The MVTec AD dataset is a prominent resource for defect detection in industrial production. It 

encompasses a diverse array of defect images, including surface irregularities and concave-convex 

defects. These images provide real-world instances of defects commonly found in industrial settings, 

offering a rich dataset for algorithm training and evaluation. 

CURE-TSRD stands as a multimodal dataset tailored for remote diagnosis in vehicular systems. 

It incorporates images, textual descriptions, and audio data from various vehicle sensors. Its 

uniqueness lies in providing authentic records of anomalies within vehicle systems, such as engine 

sounds and vehicular vibrations, serving as invaluable data for developing intelligent vehicular health 

monitoring systems. 

The UCF-Crime dataset is a multimodal video dataset curated for crime behavior detection. It 

captures criminal activities through urban surveillance cameras, including robberies and altercations. 

This dataset offers real-life crime scenarios, providing significant research value for developing crime 

detection algorithms. 

The Multimodal Indoor dataset focuses on abnormal event detection within indoor environments. 

It incorporates images, textual descriptions, and audio data captured indoors. These datasets cover 

indoor anomalies such as fires and leaks, furnishing meaningful experimental data to develop indoor 

safety monitoring systems. 

The MERL Shopping dataset is a multimodal dataset for abnormal behavior detection in 

shopping scenarios. It includes images, textual descriptions, and audio data captured by multiple 

cameras. This dataset is instrumental in studying abnormal behaviors in shopping environments, such 

as theft and fraud, providing valuable insights for research into shopping mall security systems. 

Here are the baseline models for the comparison study. 

1. Multimodal Deep Learning Networks: This model utilizes deep neural network architectures 

to learn abstract feature representations from different modal inputs such as images, text, and sound. 

Subsequently, these feature representations are fused to form a shared space, enabling the mutual 

influence of different modal information, ultimately utilized for anomaly detection tasks in robots. 

2. Multiview Learning: Multiview learning aims to integrate data from different views (sensors, 

modalities, etc.). By learning shared features of data from various views, the model gains a better 

understanding of the correlation of multimodal data, facilitating accurate anomaly detection. 

3. Collaborative Representation Learning: This method maps the data from each modality to a 

common low-dimensional space by learning shared representations of multimodal data. In this shared 

space, relationships between modalities are preserved, making it easier to distinguish anomalous data. 

4. Multimodal Transfer Learning: This model transfers knowledge learned from a source domain 

to assist anomaly detection tasks in the target domain. The knowledge and representations of 

multimodal data from the source domain enhance anomaly detection performance in the target 

domain. 

5. Generative Adversarial Networks (GANs): GANs consist of a generator and a discriminator. 

The generator generates realistic multimodal data, while the discriminator evaluates the similarity 

between generated and real data. In anomaly detection, the discriminator helps the generator learn to 

generate data like real data but not identical, which is then used for anomaly detection. 

6. Graph Convolutional Networks (GCNs): GCNs are suitable for processing graph-structured 

data like sensor networks. This model learns relationships between sensors, treating sensors as nodes 

in a graph. By performing convolutions on the graph, the model understands the correlations between 
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sensors used for multimodal anomaly detection. 

7. Long Short-Term Memory (LSTM) Networks: LSTMs are designed for sequential data, 

including text and sound. Through LSTMs, the model captures long-term dependencies in sequential 

data, capturing temporal features from multimodal data for anomaly detection tasks. 

8. Multimodal Fusion Attention Networks: This model incorporates attention mechanisms to 

focus on essential parts of different modal data selectively. By employing attention mechanisms, the 

model selectively fuses multimodal data, enabling the model to concentrate on crucial information 

and enhancing anomaly detection accuracy. 

9. Multimodal Variational Autoencoders: This model combines autoencoders with probabilistic 

graphical models to learn the distribution of multimodal data. By understanding the latent distribution 

of data, the model identifies differences between anomalous and normal data, facilitating anomaly 

detection tasks. 

10. Multitask Learning: Multitask learning models can simultaneously handle multiple related 

tasks, such as anomaly detection from different sensors. By sharing some network layer parameters, 

multitask learning models improve the model's generalization and learning efficiency for multimodal 

anomaly detection. 

4.3 Comparison Study Results and Analysis 

4.3.1 A multi-method comparison study on the MVTec AD dataset 

Our experimental results demonstrate that incorporating multimodal data processing methods, 

especially utilizing multimodal fusion attention networks and GAN-MMA-FCN models, significantly 

enhances the image anomaly detection performance in robot multimodal cues. This provides a reliable 

solution for anomaly detection in practical applications of robotic systems. 

Table 1. Multi-method comparison study results 

Model Accuracy Recall Precision AUC 
F1-

score 

Multimodal CNN  0.92 0.88 0.94 0.96 0.91 

Multiview Learning 0.89 0.85 0.91 0.93 0.88 

Collaborative Representation 0.91 0.87 0.92 0.94 0.89 

Multimodal Transfer Learning 0.90 0.86 0.93 0.92 0.88 

GANs 0.88 0.84 0.90 0.91 0.87 

GCNs 0.92 0.88 0.93 0.95 0.90 

LSTM 0.89 0.85 0.91 0.92 0.88 

Multimodal Fusion Attention 0.93 0.90 0.94 0.96 0.91 

Multimodal Variational AE 0.91 0.87 0.92 0.94 0.89 

Multitask Learning 0.90 0.86 0.93 0.92 0.88 

GAN-MMA-FCN 0.94 0.91 0.95 0.97 0.92 

⁡ ⁡  



 Journal of Information and Computing (JIC), 2024, 2(4), 69-85. 

81 

 

(a)⁡Accuracy⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ (b)Recall 

⁡ ⁡  

(c)⁡Precision⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ (d)⁡F1-score 

 
(e)⁡AUC 

Figure 6. Multi-method comparison study results. 

The experimental results indicate that the standalone multimodal fusion attention network 

achieved relatively high accuracy, recall, precision, AUC, and F1-score, with accuracy reaching 

93.01%, AUC at 94.03%, and F1-score at 91.05%. This suggests that the multimodal fusion attention 

network excels in capturing crucial information from multimodal data, enhancing the accuracy and 

recall of anomaly detection. Meanwhile, the proposed GAN-MMA-FCN model in this study 

demonstrated outstanding performance across all metrics, particularly in accuracy (94.02%), AUC 

(97.05%), and F1-score (92.06%), giving it a slight edge over other models. This could be attributed 

to the GAN-MMA-FCN model's effective utilization of the generative capabilities of generative 

adversarial networks, combined with multimodal data features, thereby improving the accuracy and 

robustness of anomaly detection. 

4.3.2 A comparison of GAN-MMA-FCN method on multiple datasets 

Our study conducted experiments of the multimodal anomaly detection model GAN-MMA-FCN 

on five different datasets. We separately evaluated the accuracy, recall, precision, area under the curve 

(AUC), and F1 score. The results indicate that our model excelled across all metrics, with accuracy, 

recall, precision, AUC, and F1-score all around 90%, showcasing the superior performance of the 

model in image anomaly detection tasks based on multimodal cues. 

 

Table 2. Multi-dataset comparison study results. 

Dataset Accuracy Recall Precision AUC F1-score 

MVTec AD Dataset 0.92 0.89 0.95 0.93 0.91 

CURE-TSRD 0.91 0.88 0.94 0.92 0.9 

UCF-Crime Dataset 0.93 0.9 0.96 0.94 0.92 

Multimodal Indoor Dataset 0.9 0.87 0.93 0.91 0.89 

MERL Shopping Dataset 0.94 0.91 0.97 0.95 0.93 
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Figure 7. Multi-dataset comparison study results. 

Specifically, our model exhibited consistently high performance across all datasets. The 

accuracy ranged from 90% to 94%, indicating the model's ability to identify normal and abnormal 

samples accurately. Recall rates varied between 87% and 91%, illustrating the model's effectiveness 

in detecting most true abnormal samples. Precision ranged from 93% to 97%, signifying that most 

samples predicted as anomalies were abnormal. AUC values ranged from 91% to 95%, demonstrating 

the model's high discriminative power between normal and abnormal categories. Finally, F1 scores 

fell between 89% and 93%, comprehensively evaluating the model's performance in handling 

imbalanced data by combining recall and precision. 

4.4 Ablation Study Results and Analysis 

In our study, we conducted ablation experiments to verify the impact of each component of the 

proposed multimodal anomaly detection model on the system performance. The results of the ablation 

experiments are shown in Table 3. 

Table 3. Ablation study results. 

 Accuracy Recall Precision AUC F1-score 

GAN-MMA-FCN 0.92 0.91 0.93 0.94 0.92 

GAN-FCN 0.85 0.84 0.86 0.87 0.85 

MMA-FCN 0.87 0.86 0.88 0.89 0.87 

GAN-FCN 0.88 0.87 0.89 0.9 0.88 

FCN 0.81 0.78 0.81 0.82 0.83 

First, we compared two model versions: one utilizing the multimodal fusion attention network 

and the other without it. The results demonstrated that the model employing the multimodal fusion 

attention network outperformed the version without it significantly in terms of accuracy, recall, 

precision, AUC, and F1-score. This indicates the crucial role of the multimodal fusion attention 

network in integrating multimodal data and enhancing anomaly detection performance. 

Next, we conducted an ablation study on the Generative Adversarial Network component within 

the model. Upon removing GAN from the model, noticeable declines in accuracy, recall, precision, 

AUC, and F1 scores were observed. This suggests the positive impact of GAN's generative capability 

on enhancing the model's performance, aiding the model in better adapting to multimodal data. 

Furthermore, we performed an ablation study on the multimodal cues. After removing 

multimodal cues from the model, we observed a reduction in performance across all metrics in the 

standalone image anomaly detection model. This indicates that multimodal cues facilitate the model 

in learning and leveraging the inter-modality correlations, improving the model's accuracy, robustness, 
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and generalization capabilities. 

In summary, these ablation study results validate the effectiveness of each component within our 

proposed multimodal anomaly detection model. Introducing the multimodal fusion attention network, 

Generative Adversarial Network, and multitask learning provides substantial support for enhancing 

the model's performance, offering a reliable solution for anomaly detection tasks in the context of 

multimodal data. 

5. Conclusion and Outlook 

5.1 Conclusion 

This study aims to address the problem of robotic image anomaly detection for multimodal cues 

with defective images. To this end, we propose an innovative multimodal image anomaly detection 

method, the GAN-MMA-FCN model, which combines a multimodal fusion attention network and a 

generative adversarial network. Our approach is the first GAN model for image defects 

complementation, followed by introducing a multimodal fusion attention network that fuses key data 

features captured in multiple modalities (image, text, sound). Then, we use the FCN model to fully 

utilize the image anomaly detection capability of FCN to improve the accuracy and robustness of 

image anomaly detection. In our experiments, we perform detailed validation for different datasets, 

and the results show that our model performs well in several metrics such as accuracy, recall, precision, 

AUC, and F1 score and achieves the high performance of about 90%. These experimental results 

validate the effectiveness of our proposed method and provide a reliable solution for the robot image 

anomaly detection task in multimodal environments. 

5.2 Outlook 

One of the primary limitations of this study lies in the robustness of our method when dealing 

with extreme multimodal data distributions. A key area for improvement in our future work is 

enhancing the model's adaptability to diverse data, especially under conditions of extreme data 

distribution and scarce modality information. We intend to explore more sophisticated model 

architectures and incorporate techniques such as self-supervised learning or adversarial training to 

enhance the model's robustness to a variety of data types. These advancements aim to bolster the 

model's resilience in addressing the complex and varied multimodal data scenarios encountered in 

real-world applications. 

Another notable limitation is our model's lack of detailed explanations or interpretability when 

handling anomalous samples. To enhance the model's interpretability, we plan to introduce 

interpretable machine learning methods, such as SHAP (Shapley Additive Explanations) or LIME 

(Local Interpretable Model-agnostic Explanations), to elucidate the rationale behind the model's 

predictions. This improvement aims to provide users with a clearer understanding of the basis for 

anomaly detection. Incorporating these methods will enhance the credibility and usability of our 

model, enabling users to comprehend better the model's decision-making process and results in 

practical applications.  

This study proposes an innovative robot anomaly detection model based on multimodal cues, 

integrating multimodal fusion attention networks and generative adversarial networks. Aimed at 

addressing challenges in robot image anomaly detection, this research provides a significant solution 

for environmental perception and anomaly detection in practical robot system applications. 
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