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ABSTRACT 

Early diagnosis of ocular diseases is critical to prevent vision impairment, yet traditional 

methods rely heavily on specialists' expertise and face resource allocation challenges. This 

study systematically evaluates the performance of diverse deep learning architectures 

(including CNNs, Transformers, and lightweight models) for multi-class ocular disease 

classification. Utilizing public ocular image datasets with transfer learning and data 

augmentation to address class imbalance, our experiments demonstrate that self-attention-

based models achieve superior accuracy for complex conditions (e.g., diabetic retinopathy), 

while lightweight architectures significantly improve computational efficiency. The findings 

provide empirical guidelines for clinical decision-support systems and propose optimization 

strategies for architecture design, contributing to practical AI-driven healthcare solutions. 
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1. Introduction 

According to the latest statistics from the World Health Organization, approximately 2.2 

billion people suffer from various forms of visual impairment. Nearly half of these cases could 

be prevented from progressing to irreversible vision loss if detected and treated early [1]. Prior 

studies have shown that many ocular diseases can lead to irreversible vision loss or blindness 

if not diagnosed in time, despite the availability of effective treatments [2]. However, the 

current ophthalmic diagnostic systems face a significant imbalance in resource distribution. 

The training of professional ophthalmologists typically requires over a decade of specialized 

education, and in developing countries, the number of qualified eye specialists is significantly 

lower than in developed nations. At present, the works of ocular disease screening are mainly 

performed on optical coherence tomography (OCT) images and fundus images. With the 

development of artificial intelligence in the field of medical image processing, some related 

methods have achieved pleasing results.[3] 

In recent years, the rapid advancement of Artificial Intelligence (AI) technologies has 

opened new avenues for addressing this issue. Deep Learning has achieved remarkable success 
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in medical image analysis, particularly in tasks such as chest X-ray interpretation and MRI 

analysis, where AI systems have matched or even surpassed expert-level performance. 

However, in the specific domain of ocular disease diagnosis, existing technologies still face 

two major challenges. First is the severe class imbalance problem. In the Kaggle ocular disease 

dataset [4] used in this study, there are as many as 3,444 images of diabetic retinopathy but 

only 102 images of pterygium—making the former 33 times more prevalent. This extreme 

imbalance significantly impairs the model’s ability to recognize minority classes. Second is the 

issue of fine-grained inter-class differences. Some diseases, such as retinitis pigmentosa and 

retinal detachment, exhibit highly similar visual characteristics in color fundus photography, 

making accurate differentiation difficult even for experienced ophthalmologists without the aid 

of Optical Coherence Tomography (OCT) or other auxiliary diagnostic tools. 

Given this background, the present study aims to systematically compare the performance 

of state-of-the-art deep learning architectures in the task of ocular disease classification, and to 

explore innovative training strategies that enhance model applicability in real-world clinical 

environments.

2. Literature Review 

2.1 Machine Learning Approaches    

The research on automated diagnosis of ocular diseases can be broadly divided into two 

major phases. Prior to the emergence of deep learning technologies, most studies relied on 

traditional machine learning methods. These approaches typically required handcrafted feature 

extraction algorithms—such as Gabor filters or morphological operations—to capture critical 

characteristics in fundus images, including vascular structures and hemorrhagic spots. For 

instance, the method proposed in [5] utilized a combination of Gabor filters to extract retinal 

texture features, achieving a classification accuracy of 78% in diabetic retinopathy detection 

tasks. Although such methods could deliver reasonable performance on specific datasets, their 

generalization capability was often severely constrained by the limitations of manual feature 

design. 

2.2 Deep Learning Approaches 

With the rapid advancement of deep learning technologies—particularly the breakthrough 

developments of Convolutional Neural Networks (CNNs) in the field of computer vision—the 

research on automated ocular disease diagnosis has entered a new phase. [6] Image 

classification was one of the first areas in which deep learning made a principal contribution to 

medical image analysis. 

In recent years, convolutional neural networks (CNNs) have been used to analyze medical 

images, and they have achieved impressive performance on medical image datasets. 

In a landmark study in 2017, Esteva et al. [7] demonstrated that deep neural networks pre-

trained on large-scale natural image datasets (such as ImageNet) could be effectively 
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transferred to medical image analysis tasks through appropriate fine-tuning. 

In a landmark study in 2025, Benny Sukma Negara et al. [8] illustrate that CNN-based 

models can automatically learn hierarchical representations from raw fundus images, 

eliminating the need for manual feature extraction. 

In recent years, increasingly sophisticated network architectures and training strategies 

have been introduced to this domain. For instance, the model proposed in [9] incorporates a 

channel attention mechanism, integrating a Multi-scale Feature Representation (MFR) module 

to capture features at varying scales, along with a Channel-Spatial Dual Attention (CSDA) 

module to emphasize salient regional features. Compared with traditional methods, this 

approach achieves higher classification accuracy and computational efficiency. Experimental 

results on datasets such as Retinal fundus image (RFI), Online Retinal fundus Image database 

for Glaucoma Analysis and research (ORIGA) database., and High-resolution fundus (HRF) 

Image Database have demonstrated its superior performance. 

Another notable approach is presented in [10], which applies a Vision Transformer (ViT)-

based framework to grade Diabetic Retinopathy (DR). The method has shown excellent 

performance across fundus image datasets with varying resolutions, outperforming CNN-based 

and other baseline models in terms of accuracy (91.4%), AUC (0.986), sensitivity (0.926), and 

specificity (0.977). Compared to CNNs [11], Vision Transformers (ViTs) are free from 

convolution-induced biases, enabling them to learn global features and capture complex 

relationships in the data more effectively. ViTs [12] also leverage a self-attention mechanism 

that enhances their ability to model long-range dependencies. As a result, ViTs [13] achieve 

competitive or even superior performance compared to state-of-the-art convolutional networks, 

while requiring significantly fewer computational resources during training. 

2.3 Existing Challenges 

 Despite the remarkable progress achieved through deep learning in automated ocular 

disease diagnosis, several critical challenges remain unresolved. Among the most pressing is 

the issue of data scarcity, particularly concerning clinically rare disease categories. For example, 

in the dataset used in this study, the number of samples for pterygium accounts for only 0.6% 

of the total data. This extreme class imbalance hinders the model’s ability to effectively learn 

representative features of such minority classes, ultimately compromising diagnostic accuracy. 

 Another major challenge lies in the limited interpretability of model decision-making 

processes. In the highly specialized field of medical diagnosis, clinicians must be able to 

understand the rationale and reasoning behind AI-generated predictions. However, most 

current research focuses predominantly on improving performance metrics such as accuracy, 

often at the expense of exploring and visualizing the internal decision mechanisms of models. 

This lack of transparency significantly limits the practical applicability of AI systems in real 

clinical settings. 

 Addressing these challenges requires interdisciplinary collaboration across both technical 
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and clinical domains. For the issue of data scarcity, Generative Adversarial Networks (GANs) 

offer a promising solution. A study by Frid-Adar et al. (2018) [14] demonstrated that synthetic 

medical images could improve CNN classification performance by up to 15%. As for model 

interpretability, the integration of explainable AI techniques such as attention mechanisms [15] 

and Gradient-weighted Class Activation Mapping (Grad-CAM) [16] is likely to become a key 

area of future research. Only by overcoming these critical barriers can automated ocular disease 

diagnosis truly bridge the gap from laboratory research to clinical deployment. 

3. Research Design 

3.1 Dataset and Preprocessing 

 This study utilizes a publicly available ocular disease dataset from the Kaggle platform as 

the foundation for experimentation. The dataset comprises approximately 15,328 high-quality 

fundus images, covering 10 common types of ocular diseases. All images are meticulously 

annotated, encompassing a range of conditions from prevalent diabetic retinopathy to rarer 

diseases such as pterygium. The dataset is partitioned into training, validation, and test sets 

using a 7:2:1 split ratio. 

  

Figure1. Dataset Image Statistics               Figure2. Image Categories 

 

To ensure data quality, we implemented a rigorous preprocessing pipeline, including the 

removal of low-quality images, uniform resizing of all images to a resolution of 224×224 pixels, 

and pixel normalization. Specifically, pixel values were linearly scaled from the original range 

[0, 255] to the interval [-1, 1] using mean = 0.5 and standard deviation = 0.5. The normalization 

formula is defined as: 

𝐼𝑛𝑜𝑟𝑚 =
I − 127.5

127.5
 

I: input image 

  

 To enhance the model's generalization ability, address class imbalance, and mitigate 

overfitting, we employed various data augmentation techniques. These included targeted 

geometric transformations (random rotations within ±15 degrees and vertical/horizontal 
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flipping) as well as subtle adjustments to brightness and contrast (controlled within ±10% and 

±20%, respectively). These strategies effectively increased the data diversity of minority 

classes and helped alleviate overfitting. 

 

3.2 Model Architecture 

In selecting the model architecture, we focused on comparing five deep learning models, 

as shown in Table 1. 

 

Table 1. Model architecture 

Model name Parameters  Input size 

EfficientNet-B7 66.3M 224×224×3 

MobileNetV3-Large 5.4M 224×224×3 

DenseNet121 8.0M 224×224×3 

GhostNet_100 5.2M 224×224×3 

EVA-02_large 300M 224×224×3 

 

 

EfficientNet-B7, recognized as one of the most efficient models to date, adopts a 

compound scaling method to balance network depth, width, and resolution. In this study, we 

froze the parameters of its first five MBConv(Mobile Inverted Bottleneck Convolution) feature 

extraction blocks and redesigned only the top classification head, incorporating a fully 

connected network with a 512-dimensional hidden layer and a dropout rate of 0.4. 

DenseNet121 utilizes a densely connected structure to promote feature reuse, with each 

layer directly connected to all subsequent layers, effectively alleviating the vanishing gradient 

problem. We froze parts of its intermediate layers and optimized the classifier structure to better 

adapt to the specific task. 

EVA-02, a novel Vision Transformer architecture, captures global feature relationships 

through a self-attention mechanism, demonstrating strong long-range dependency modeling 

capabilities. 

GhostNet employs ghost modules to generate more feature maps with minimal 

computational cost, making it particularly suitable for deployment on mobile devices. 

MobileNetV3 combines neural architecture search techniques with the h-swish activation 

function, significantly reducing the number of parameters while maintaining accuracy. 

As lightweight models, GhostNet and MobileNetV3 are particularly suitable for 

deployment in resource-constrained environments, such as edge computing devices like 

Raspberry Pi. For MobileNetV3, we only unfroze the last two inverted residual blocks to 

balance transfer learning performance with computational cost. 

 

3.3 Training Strategy 

The batch size during training was uniformly set to 16 to ensure a fair comparison. We 
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adopted the cross-entropy loss function and applied class-specific weighting based on the 

inverse of the number of samples per class, enabling the model to pay more attention to 

minority classes. 

The cross-entropy (CE) loss is defined in Equation (1), where yi represents the true label 

and pi denotes the predicted probability. 

𝐶𝐸 = −∑(𝑦𝑖 ∗ log⁡(𝑝𝑖)) ······························· [Formular 1] 

The Adam optimizer was employed with parameters set as β₁ = 0.9 and β₂ = 0.999. The 

initial learning rate(lr) was configured at 0.001, and adjusted dynamically using the 

ReduceLROnPlateau strategy, which reduced the learning rate by a factor of 10 upon stagnation 

of the validation loss. 

To prevent overfitting, we implemented an EarlyStopping mechanism, terminating 

training if the validation metric did not improve for five consecutive epochs. 

Epoch, in machine learning, refers to the one entire passing of training data through the 

algorithm. It's a hyperparameter that determines the process of training the machine learning 

model. 

All experiments were conducted on a workstation equipped with an NVIDIA RTX 4070 

GPU. 

 

3.4 Evaluation Metrics 

The evaluation metrics included not only traditional measures such as accuracy, precision, 

and recall, but also incorporated confusion matrix analysis to reveal the model’s error patterns 

for specific classes. 

The confusion matrix, as shown in Table 2, defines True Positive (TP) as the number of 

samples correctly predicted as positive, False Negative (FN) as the number of positive samples 

incorrectly predicted as negative, False Positive (FP) as the number of negative samples 

incorrectly predicted as positive, and True Negative (TN) as the number of samples correctly 

predicted as negative. Based on the confusion matrix, the evaluation metrics for classification 

tasks, including accuracy (2), precision (3), recall (4), and F1-score (5), were computed. 

 

Table 2. Confusion Matrix 

 

(Confusion Matrix) 

Actual\Predict Positive Negative 

Positive True Positive 

(TP) 

False Positive (FP) 

Negative False Negative 

(FN) 

True Negative (TN) 

 



 

                                      Journal of Information and Computing (JIC), 2025, 3(2), 14-22. 

20 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃⁡+⁡𝑇𝑁)

(𝑇𝑃⁡+⁡𝑇𝑁⁡+⁡𝐹𝑃⁡+⁡𝐹𝑁)
 ······················· [Formular 2] 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 ·································· [Formular 3] 

𝑅𝑒𝑐𝑎𝑙𝑙⁡ = ⁡
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 ······································ [Formular 4] 

𝐹1 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡∗⁡𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+⁡𝑅𝑒𝑐𝑎𝑙𝑙)
 ···························· [Formular 5] 

                                

Experimental Results 

 Through systematic experimental comparisons, we obtained extensive result data. In 

terms of overall performance, EfficientNet-B7 demonstrated the best results, achieving a 

classification accuracy of 87.16%, with a precision of 86.32%, a recall of 85.74%, and a stable 

F1-score of 86.03%. These results validate the effectiveness of the compound scaling strategy 

for medical image classification tasks. Although MobileNetV3 exhibited slightly lower 

absolute performance (accuracy of 85.82%), it showed significant advantages in training 

efficiency, requiring only 350 seconds per epoch—42% less time compared to EfficientNet-

B7—which makes it particularly valuable for real-time application scenarios. DenseNet121 

achieved comparable performance to MobileNetV3 (accuracy of 85.96%), but demanded more 

computational resources. A summary of the experimental results is presented in Table 3. 

 

Table 3. The experimental results 

Model Accuracy Precision Recall F1 Epoch 

EfficientNet-B7 87.16 86.32 85.74 86.03 650s 

MobileNetV3 85.82  84.91 84.12 84.51 350s 

DenseNet121 85.96 85.07 84.35 84.71 340s 

GhostNet_100 82.41 81.23 80.67 80.95 440s 

EVA-02_large 79.83 78.92 77.56 78.23 720s 

 

In terms of specific pathological categories, the performance differences among different 

models were more pronounced. For diseases with sufficient sample sizes, such as diabetic 

retinopathy and retinal detachment, all models performed excellently, with EfficientNet-B7 

achieving recall rates of 96.3% and 97.4%, respectively, for these two categories. However, for 

rare conditions like pterygium, even with data augmentation and class weighting, the recall rate 

of the best-performing model was only 93.6%. This highlights the ongoing challenge of small 

sample learning. 
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The visual analysis of the training process revealed the learning characteristics of different 

models. The loss curves indicated that MobileNetV3 converged the fastest, reaching a stable 

state within 20 epochs. In contrast, EVA-02_large, due to its large parameter size (over 300M), 

exhibited significant overfitting, with validation loss fluctuations exceeding 15%. This study 

demonstrates that, in medical image analysis tasks, a more complex model is not always better; 

an appropriately designed deep learning network may achieve better generalization 

performance. 

Discussion and Conclusion 

 The systematic experiments in this study provide important empirical references for the 

field of automated diagnosis of ocular diseases. From a clinical application perspective, the 

choice of model for different scenarios requires a comprehensive consideration of multiple 

factors. In settings where computational resources are abundant and the highest diagnostic 

accuracy is prioritized, EfficientNet-B7 is undoubtedly the best choice. However, in scenarios 

requiring mobile deployment or real-time analysis, the lightweight characteristics of 

MobileNetV3 make it a more suitable candidate. It is worth noting that current research still 

has several limitations, the most prominent being insufficient data coverage, particularly for 

late-stage diseases such as proliferative diabetic retinopathy. This limitation somewhat restricts 

the clinical applicability of the model. 

 Looking ahead, we believe several important directions are worth further exploration. 

First, the integration of multimodal data is a promising avenue. Current research is primarily 

based on color fundus photography, while other modalities such as OCT imaging could provide 

complementary diagnostic information. Second, improving model interpretability is essential. 

By integrating techniques like Grad-CAM to generate heatmaps for lesion localization, clinical 

trust in AI systems could be significantly enhanced. 

 In conclusion, through systematic comparative experiments, this study comprehensively 

evaluated the application of deep learning in ocular disease classification. We not only verified 

the outstanding performance of EfficientNet-B7 but also provided MobileNetV3 as an efficient 

alternative for resource-constrained scenarios. 
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