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ABSTRACT 

Achieving a carbon-neutral strategy requires effective carbon footprint management, an area 

where deep learning technology shows significant promise. However, current methods for managing 

carbon footprints face challenges related to accuracy and scalability. To address these limitations, we 

propose an intelligent model that leverages deep learning to enhance the efficiency and precision of 

carbon footprint measurement and management. Our model integrates diverse data sources, including 

meteorological data, athlete running data, and other emissions-related information. By employing 

deep learning, the model can automatically identify patterns and trends in carbon emissions, 

facilitating more informed decision-making toward carbon neutrality. Through a series of 

experiments, our model has demonstrated notable performance advantages. It provides more accurate 

measurements of carbon footprints and offers personalized, carbon-neutral recommendations for 

long-distance runners, such as optimizing training routes or schedules to reduce emissions. This study 

introduces deep learning into the carbon footprint management field, enhancing measurement 

accuracy and the intelligence of management practices. 

 

Keywords: Deep learning, Carbon neutral, Carbon footprint, Sustainability, Smart model, Data 

analysis 

 

1. Introduction 

As global climate change and environmental sustainability issues intensify, carbon neutrality has 

become a central focus for governments, businesses, and individuals worldwide. In simple terms, 

carbon neutrality refers to the goal of achieving net-zero emissions by reducing, offsetting, or 

absorbing carbon emissions generated by human activities[1, 2]. This concept is critical in the fight 

against climate change and in minimizing environmental impacts, particularly as global greenhouse 

gas emissions continue to rise. However, achieving carbon neutrality is no small feat. One of the key 

challenges in carbon emission management is accurately estimating emissions to implement effective 
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reduction and offset strategies. This task is complicated by the complexity of the data, the need to 

analyze time series data, and the inherent uncertainties and accuracy concerns[3, 4]. These challenges 

become especially pronounced in the context of sports, such as the training and competition of long-

distance runners, where precise carbon emission estimates are crucial[5, 6]. 

As deep learning technology advances swiftly, there is a growing interest among researchers in 

harnessing its capabilities to tackle the pressing issue of achieving carbon neutrality. Models such as 

CNNs and RNNs are being widely utilized to dissect complex time series data and extensive 

datasets[6, 7]. These models, with their robust computational power and adept data modeling, are 

particularly well-suited for assessing carbon emissionss[8, 9]. Within the field of carbon neutrality 

research, deep learning has been instrumental in estimating emissions, with a focus on sectors like 

energy, transportation, and industry. However, the application of these techniques to estimate carbon 

emissions from sports activities and athletes presents a novel and challenging frontier, requiring 

consideration of the individual behaviors and traits of athletes[10]. Predicting the carbon footprint of 

long-distance runners, in particular, carries significant practical and theoretical weight. For these 

athletes, mitigating carbon emissions might entail choices ranging from training gear to race planning 

to travel arrangements[11]. Precise predictions of carbon footprints can offer athletes timely 

environmental insights, enabling them to cut emissions while enhancing sustainability and 

environmental conservation efforts[12]. 

In light of this, the objective of our study is to leverage artificial intelligence technology for 

carbon footprint management among long-distance runners, aligning with carbon neutrality strategies. 

We have developed an advanced deep learning model, the ResNet-SAN, and incorporated the 

Sparrow Search Algorithm (SSA) for model refinement, thereby creating an accurate carbon emission 

estimation framework. This research pioneers new avenues and potential applications for achieving 

carbon neutrality within the sports industry, contributing to the broader exploration of artificial 

intelligence in sustainable development initiatives. In this study, we will present a detailed account of 

the ResNet-SAN model's design and experimental outcomes, highlighting its role in managing the 

carbon footprint of long-distance runners. We will delve into the model's performance, data analysis 

techniques, and its prospective applications in formulating carbon neutrality strategies, with the goal 

of offering novel perspectives and practical solutions to the field of carbon neutrality research. By 

integrating deep learning with the critical issues of carbon neutrality, this research aims to pave the 

way for eco-friendly practices and sustainable management in the realm of sports, advancing the 

pursuit of carbon neutrality objectives. 

The primary achievements of this study can be summarized as follows: 

1. An inventive deep learning framework, the ResNet-SAN model, is introduced in this study. 

This model amalgamates ResNet with SAN to enhance the accuracy of processing time series data 

and estimating carbon emissions from long-distance runners. 

2. Automated parameter optimization algorithm. We adopted the Sparrow Search Algorithm 

(SSA), an automated parameter optimization algorithm, to adjust the hyperparameters of the ResNet-

SAN model for optimal performance. The introduction of SSA makes model parameter selection 
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more efficient and accurate, helping to improve the accuracy of carbon emission estimates. 

3. Practical carbon emission management application. Our research not only stays at the 

theoretical level, but also applies models and algorithms to actual carbon emission management 

scenarios, especially carbon emission estimation for long-distance runners. By providing an accurate 

estimation method, we effectively support distance runners in choosing environmentally friendly 

training equipment and optimizing travel and event arrangements to reduce their carbon footprint. 

2. Literature Review 

In this section, we will examine relevant research and explore the utilization of existing models 

in carbon footprint management, along with their limitations. This analysis aims to offer a more 

comprehensive understanding of the significance and potential advantages of our innovative model. 

2.1 Carbon neutrality and carbon footprint management 

Carbon neutrality strategies are a top priority in global climate change response. To achieve 

carbon neutrality, we need to deeply understand and effectively manage our carbon footprint[13-15]. 

Carbon footprint is a key metric for assessing the contribution of an individual, organization or 

product to greenhouse gas emissions over its life cycle. In recent years, carbon neutrality and carbon 

footprint management have become hot topics in the field of environmental protection and attracted 

widespread attention[15]. 

Current research hotspots focus on the following aspects. First, researchers are working to 

develop more accurate and comprehensive carbon footprint calculation methods to better understand 

emission sources and identify emission reduction opportunities[16, 17]. At the same time, carbon 

neutrality strategies have also attracted much attention, including policy measures such as carbon 

emissions trading, carbon taxes, and carbon offsets, aiming to reduce carbon footprints. On the other 

hand, the collection and analysis of carbon footprint data has become more common. With the help 

of big data and artificial intelligence technology, companies and governments can better understand 

their carbon footprint and formulate more targeted policies[18]. Finally, visualizing and disseminating 

carbon footprint data has also become a hot topic of research to increase public awareness and 

participation[19]. 

However, there are still some challenges in the area of carbon neutrality and carbon footprint 

management. The quality and availability of data can be inconsistent, sometimes incomplete or 

unreliable, and improvements in data collection and validation techniques are needed. Additionally, 

carbon neutrality policies and regulations vary from region to region, which can lead to confusion 

and inconsistency[20]. As a result, researchers and governments are coordinating international 

policies to promote consistency. In addition, while carbon neutrality is the goal, challenges remain in 

the development and implementation of related technologies, including the development of new low-

carbon technologies and energy sources[21, 22]. 

2.2 Deep Learning and Artificial Intelligence 

The emergence of deep learning and artificial intelligence (AI) technologies has attracted 
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widespread attention in the field of environmental protection. These technologies provide new tools 

and methods for solving carbon neutrality and other environmental issues[23, 24]. Currently, deep 

learning and artificial intelligence have various application areas in the field of environmental 

protection. First, they are applied to meteorological and climate modeling to improve meteorological 

predictions and climate models and better understand and respond to climate change. Second, these 

technologies are used to monitor and estimate carbon emissions, helping to reduce greenhouse gas 

emissions with the help of remote sensing data and deep learning technology[20, 25]. In addition, 

deep learning and AI are used to optimize the production and distribution of renewable energy and 

promote the development of clean energy. There is also the field of automated environmental 

monitoring, where smart sensors and deep learning systems monitor environmental indicators such 

as pollution levels, air quality and forest cover in real time[26]. 

However, despite the huge potential of deep learning and artificial intelligence in environmental 

protection, challenges remain. Data quality and availability is an issue, as data in many environmental 

fields can be difficult to obtain. Solutions include data sharing and enhanced technology[27]. 

Moreover, deep learning models are frequently perceived as black boxes, posing challenges in 

explaining their decision-making processes, which can potentially complicate environmental policy 

formulation and oversight. Therefore, researchers are working hard to develop transparent and 

explainable AI models. 

2.3 Sustainable Development 

The application of sports, long-distance running and deep learning technology in carbon 

neutrality and carbon footprint management provides strong support for achieving sustainable 

development and environmental protection goals. Progress in this domain has been substantial, yet it 

encounters certain challenges[28]. As activities with high public participation, sports and long-

distance running have extensive social influence. Many sporting events and long-distance running 

events are increasingly recognizing their environmental responsibilities[29]. Some international 

sports events have adopted a number of environmental measures, such as reducing the carbon 

footprint of the event and encouraging spectators to adopt sustainable transportation methods to 

reduce traffic pollution. Education in the sports field is also increasingly emphasizing sustainable 

development and environmental protection issues, providing athletes and sports practitioners with 

more environmental awareness training. 

As an outdoor exercise activity, long-distance running and close contact with nature make it 

easier for long-distance runners to recognize environmental issues. Some distance running events 

have adopted sustainable practices such as using recycled paper cups and reducing plastic waste[30]. 

Long-distance runners also actively participate in environmental protection sports and contribute to 

environmental protection through their own practical actions. This active participation not only 

benefits individual athletes, but also has a positive environmental impact on society as a whole. Deep 

learning technology has been widely used in environmental data processing and carbon footprint 

management[31]. By analyzing large-scale environmental data, deep learning models can identify 

key sources of carbon emissions, optimize energy consumption, and propose sustainable 
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environmental strategies[32]. The application of these technologies provides important support for 

the formulation and execution of carbon neutral strategies[33]. However, deep learning technology 

still faces challenges in carbon footprint management. Model accuracy, computational cost, and data 

privacy issues are currently the main problems that need to be solved[34]. Henceforth, forthcoming 

research endeavors will prioritize enhancing the efficiency and precision of deep learning models, 

concurrently with fortifying data privacy and security measures. 

3. Methodology 

3.1 Overview of Our Model 

The ResNet-SAN model is a pivotal innovation we introduce in this study, representing a 

synergy of three crucial neural network architectures: the deep residual network (ResNet), self-

attention network (SAN), and Sparrow Search Algorithm (SSA). ResNet excels in processing time 

series data and other inputs, enabling the training of exceedingly deep neural networks. It captures 

features and patterns through residual connections, playing an integral role in modeling time series 

data such as the activity logs of long-distance runners. This capability significantly enhances the 

analysis and estimation of carbon emissions, offering precise projections. The SAN component is 

employed to enrich the model's data representation and comprehension. Its self-attention mechanism 

adeptly seizes correlations and dependencies across various temporal data points. SAN's ability to 

discern temporal fluctuations is particularly beneficial for time series data, thus amplifying the 

precision of both modeling and predictive tasks. Furthermore, the SSA serves as an automated 

hyperparameter optimization protocol, fine-tuning the ResNet-SAN model's configuration. It 

diligently searches for the most optimal hyperparameters, including network depth and learning rate, 

among others, to ensure the model's efficacy in managing carbon footprints. 

We first built the ResNet part, which consists of multiple residual blocks, each containing 

convolutional layers and activation functions. This part is mainly used for feature extraction and 

representation of time series data. Next, we introduced the SAN part, which plays a key role in the 

processing of time series data. The self-attention mechanism is used to model the relationship between 

different time steps in temporal data. By connecting the ResNet part and the SAN part, we build a 

complete ResNet-SAN model, which can comprehensively handle feature extraction and temporal 

dependency modeling of time series data. Finally, we integrated the SSA module for automatically 

adjusting model parameters to improve overall performance. SSA further improves the accuracy and 

efficiency of the model by searching for optimal hyperparameter settings. Figure 1 illustrates the 

structural diagram of the entire model. Table 1 represents the operation process of the ResNet-SAN 

model. 
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Figure 1. Overall flow chart of the model. 

Table 1. The algorithm process of the ResNet-SAN model. 

Algorithm 1: ResNet-SAN Training 

Initialize ResNet-SAN model 

Define loss function, learning rate, and optimization algorithm 

Load Meteorological Dataset, GPS Trajectory Dataset, Energy Consumption Dataset, Event 

Arrangement Dataset 

Split datasets into training, validation, and test sets 

for each epoch do 

for each batch in training set do 

Perform data augmentation (if applicable) 

Forward pass: 

for each data source do 

Extract data from the source 

Pass data through a shared sub-network 

end for 

Combine the outputs 

Compute RMSE and MAE loss 

Backward pass: 

Update model parameters using the optimizer 

end for 

for each batch in validation set do 

Forward pass (similar to training) 

Compute RMSE and MAE on validation data 

end for 

Choose model with the lowest validation RMSE for early stopping (if applicable) 

end for 

for each batch in test set do 
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Forward pass (similar to training) 

Compute RMSE and MAE on test data 

end for 

Output the trained ResNet-SAN model 

The introduction of the ResNet-SAN model and SSA module is of great significance to our 

research questions. First, they provide an advanced method to more accurately estimate the carbon 

emissions of long-distance runners. This is vital to support the goals of carbon neutrality and 

sustainable development. Secondly, the innovation of the model lies in the combination of three 

different neural network structures and automated parameter optimization algorithms, thus integrating 

their advantages and improving the performance of the model. Ultimately, the application potential 

of the ResNet-SAN model and SSA module extends beyond carbon emission management for long-

distance runners. They can also be utilized in various other fields for time series data analysis, thereby 

offering robust support for environmental protection practices and sustainability management. This 

gives the model broad application prospects in promoting carbon-neutral research and sustainable 

development. 

3.2 Deep Residual Network 

The ResNet is a deep learning model specifically engineered to address the challenges associated 

with vanishing and exploding gradient problems in deep neural networks[35]. Its core principle is the 

introduction of Residual Blocks, which allow the network to learn residual functions to better handle 

information transfer and feature extraction in deep networks[36]. The core idea of ResNet is to pass 

input directly to subsequent layers through skip connections, thereby preventing the loss of 

information in deep networks. In the ResNet model, each residual block contains multiple 

convolutional layers. The standard residual block consists of the following: 

1. Input: The input of the residual block is passed through the convolutional layer for feature 

extraction. 

2. Identity Mapping: This segment directly connects the input to the output of the residual block, 

establishing a skip connection. 

3. Convolutional layer: The convolutional layer is used to learn the residual and add the input 

features to the output of the identity map to form the output of the residual block. 

This approach enables the ResNet model to effectively train exceedingly deep neural networks, 

leading to notable enhancements in performance across domains such as image recognition, object 

detection, and natural language processing. 

ResNet assumes a pivotal role in this model, primarily employed for processing time series data, 

particularly the activity data pertaining to long-distance runners. Its network structure helps the model 

better capture activities in time series data modeling. Characteristics and patterns of data. The role of 

the ResNet model in this study is detailed below: 

1. Feature extraction and representation: ResNet’s convolutional layers and residual blocks are 

used to extract key features in time series data. Through convolution operations, the model is 

able to capture spatial features and patterns in the data, such as an athlete's pace, speed, and 
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energy expenditure. This helps describe the properties of activity data more accurately, providing 

important input features for the estimation of carbon emissions. 

2. Solving the vanishing gradient problem: Deep neural networks frequently encounter the 

vanishing gradient problem, particularly during the training of deep networks. ResNet addresses 

this issue by introducing skip connections, facilitating easier gradient propagation. In the context 

of modeling time series data, especially in the activities of long-distance runners, the network's 

depth is crucial for capturing temporal dependencies. The structure of ResNet helps maintain the 

stable propagation of gradients, thereby improving the accuracy of the model. 

3. Support time series data modeling: Time series data usually contains correlations and 

dependencies between time steps. The deep structure of ResNet helps the model better 

understand changes in time series. This is key to accurately analyzing and predicting carbon 

emissions for distance runners, as the temporal nature of activity data has a significant impact 

on carbon emissions. 

Figure 2 depicts the structural diagram of the ResNet model. 

 
Figure 2. Flow chart of the ResNet Model 

The main formula and key variables of ResNet are as follows. 

𝑦 = 𝐹(𝑥,𝑊𝑖) + 𝑥 ··················································· [1] 

𝑦: output. 

𝐹: residual function. 

𝑥: input. 

𝑊𝑖: the set of learnable parameters. 
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𝐹(𝑥,𝑊𝑖) = 𝒦(𝑥,𝑊𝑖) − 𝑥 ········································· [2] 

𝒦(𝑥,𝑊𝑖): learned residual mapping. 

𝑥: input. 

𝑊𝑖: the set of learnable parameters. 

𝑦 = 𝐹(𝑥,𝑊𝑖) + 𝑥 ··················································· [3] 

𝑦: output. 

𝐹: sequence of transformations. 

𝐹(𝑥,𝑊𝑖) = 𝒦(𝐵𝑁(𝑥,𝑊𝑖)) − 𝑥 ·································· [4] 

𝐵𝑁(𝑥,𝑊𝑖): batch normalization applied to x with parameters Wi. 

x: input. 

𝐹(𝑥,𝑊𝑖) = 𝒦(𝑊2𝜎(𝑊1𝑥)) ········································ [5] 

𝑊1,𝑊2: weight parameters. 

𝜎: activation function. 

𝑦 = 𝐹(𝑥,𝑊𝑖) + 𝑥 ··················································· [6] 

𝑦: output. 

𝐹: sequence of transformations. 

𝑦 = 𝐹(𝑥,𝑊𝑖) + ℱ(𝑥,𝑊ℱ,𝑖) ······································· [7] 

𝑦: output. 

𝐹: residual function for the residual path. 

ℱ: residual function for the identity path. 

𝑊𝑖,𝑊ℱ,𝑖: learnable parameters. 

3.3 Self-Attention Network 

Self-Attention Network (SAN) is a deep learning model that was initially widely used in the 

field of natural language processing. The core principle of SAN is to allow the model to dynamically 

assign different attention weights to elements at different positions when processing sequence 

data[37]. This implies that the model can effectively capture correlations within contextual sequence 

data, without being constrained by a fixed window size[38]. In a SAN, each element can interact with 

other elements in the sequence, thereby capturing the dependencies between elements. Its core 

components include query, key and value. By calculating the similarity between the query and the 

key, the weight of each element is obtained, and a weighted sum is performed to generate the output. 

This mechanism allows the model to adaptively emphasize important elements based on the context 

of the data. 

In our research, the Self-Attention Network (SAN) model was introduced, mainly used to 

process the time series data of long-distance runners, such as activity records, training situations, etc. 

Its role in this model is reflected in the following aspects: 

1. Temporal dependence modeling: Time series data often contains temporal dependencies, that 

is, correlations between different time steps. The SAN model can help us better understand 

changes in time series and capture the dependencies between different time steps. This is key to 

accurately estimating the carbon emissions of long-distance runners. 
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2. Data representation improvements: The SAN model improves the way data is represented. By 

calculating attention weights between elements, the model can more accurately capture 

important information in the data, thereby improving the representation quality of the data. This 

helps us estimate carbon emissions more accurately. 

3. Data correlation analysis: There may be complex correlations between elements in time series 

data. The SAN model helps the model better understand these correlations, thereby improving 

the model's ability to analyze and predict carbon emission data. 

SAN has excellent performance when processing time series data, which is closely related to the 

estimation and analysis of carbon emissions. Therefore, key parts of this model are based on the SAN 

model, aiming to improve the accuracy and sustainable management of carbon emissions for long-

distance runners. Figure 3 illustrates the structural diagram of the SAN model. 

 

Figure 3. Flow chart of the SAN Model. 

The main formula of SAN model is as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 ····························· [8] 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉): weighted sum of values 𝑉 based on attention scores. 

𝑄: query matrix. 

𝐾: key matrix. 

𝑉: value matrix. 

𝑑𝑘: dimension of the key. 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,⋯ , ℎ𝑒𝑎𝑑ℎ)𝑊
𝑂 ···· [9] 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉): the output of the multi-head attention mechanism. 

𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,⋯ , ℎ𝑒𝑎𝑑ℎ): the concatenation of multiple heads. 

𝑊𝑂: the output weight matrix. 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) ·····················[10] 

ℎ𝑒𝑎𝑑𝑖: the 𝑖-th attention head. 

𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾, and 𝑉𝑊𝑖

𝑉: the linear projections of queries, keys, and values. 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑋)) ·······························[11] 
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𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚: the layer normalization operation. 

𝑋: input. 

𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑋): sub-layer of the network. 

𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑋) = 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑆𝑒𝑙𝑓 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋)) ··[12] 

𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑋): the sub-layer operation. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋): the self-attention mechanism. 

𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑆𝑒𝑙𝑓 − 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋)) : the feedforward neural network applied to the self-

attention output. 

𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑋) = 𝑚𝑎𝑥(0, 𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2 ··········[13] 

𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑋): the output of the feedforward neural network. 

𝑊1, 𝑏1, 𝑊2 and 𝑏2: learnable weights and biases. 

𝑋 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐿𝑎𝑦𝑒𝑟𝑎𝑁𝑜𝑟𝑚(𝑋 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑋))) ······[14] 

𝑋: input. 

𝐿𝑎𝑦𝑒𝑟𝑎𝑁𝑜𝑟𝑚: the layer normalization operation. 

𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑋): the sub-layer operation. 

𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑋): the multi-head attention mechanism applied to the input. 

3.4 Sparrow Search Algorithm Model 

The SSA is an optimization technique that simulates the foraging behavior of birds[39]. The core 

principle of SSA is to regard the solution space of the problem as a space where birds are searching 

for food, and each bird embodies a possible solution. Birds exchange information with each other to 

find the best solution, simulating the collaboration and information sharing process in nature[40]. The 

SSA algorithm gradually optimizes the objective function of the problem by updating the position of 

each solution. In SSA, each "bird" represents a possible solution and they search the solution space 

at a certain speed and direction while sharing information to guide other birds' searches. Throughout 

the iterative process, the flock of birds gradually converges towards either the global optimal solution 

or the local optimal solution, depending on the specific problem and the algorithm parameters. 

In our research, the role of SSA is mainly used for hyperparameter optimization of the model. 

The effectiveness of a model is influenced by various hyperparameters, such as network depth, 

learning rate, and batch size. Optimal selection of these hyperparameters can greatly impact both the 

performance and convergence speed of the model. The SSA algorithm automatically finds the optimal 

hyperparameter configuration by searching the hyperparameter space to maximize the performance 

of the model. Specifically, the role of SSA in this model includes:: 

1. Hyperparameter search: The SSA algorithm is employed for exploring the hyperparameter 

space of a network with the aim of identifying the optimal hyperparameter configuration. This 

includes adjusting the network’s depth, learning rate, batch size, and more to ensure the model 

performs well on carbon footprint management tasks. 

2. Model performance optimization: SSA helps improve overall model performance by 

automatically searching for optimal hyperparameter configurations. This is critical to accurately 

estimate the carbon emissions of long-distance runners and support carbon-neutral strategies. 
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Through the application of SSA, we aim to improve the performance of the model and make the 

model better adapted to the needs of carbon footprint management tasks by automatically searching 

for optimal hyperparameter configurations. Figure 4 illustrates the structural diagram of the SSA 

model. Figure 4 illustrates the structural diagram of the SSA model. 

 

Figure 4. Flow chart of the SSA Model. 

The main formula and main variables of SSA are as follows: 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑋, 𝑌) = 𝑋 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝑌) ······················[15] 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑋, 𝑌): the updated memory of the sets 𝑋 with attention to sets Y.  

𝑋: input set. 

𝑌: the set to attend to. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝑌): the attention mechanism between sets 𝑋 and Y. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝑌) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑋𝑌𝑇

√𝑑𝑘
)𝑌 ··························[16] 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋, 𝑌): weighted sum of set 𝑌 based on attention scores with respect to set 𝑋. 

𝑋𝑌𝑇: the inner product of sets 𝑋 and 𝑌. 

√𝑑𝑘: the dimension of the key. 

𝑆𝑒𝑡2𝑉𝑒𝑐(𝑋) = 𝑚𝑒𝑎𝑛(𝑋) ········································[17] 

𝑆𝑒𝑡2𝑉𝑒𝑐(𝑋): the vector representation of set 𝑋. 

𝑚𝑒𝑎𝑛(𝑋): the mean of set 𝑋. 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑄,𝑀) = 𝑀 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝑀) ····················[18] 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑄,𝑀): the updated query 𝑄 with attention to memory 𝑀. 
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𝑄: the input query. 

𝑀: the memory set. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝑀): is the attention mechanism between query 𝑄 and memory 𝑀. 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑀,𝑄) = 𝑀 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑀,𝑄) ····················[19] 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑀,𝑄): the updated memory 𝑀 with attention to query 𝑄. 

𝑀: input memory. 

𝑄: query set. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑀,𝑄): the attention mechanism between memory 𝑀 and query 𝑄. 

𝑆𝑒𝑡2𝑆𝑒𝑡(𝑄) = 𝑆𝑒𝑡2𝑉𝑒𝑐(𝑄𝑢𝑒𝑟𝑦(𝑄,𝑀𝑒𝑚𝑜𝑟𝑦(𝑋, 𝑌))) ······[20] 

𝑆𝑒𝑡2𝑆𝑒𝑡(𝑄): the set-to-set operation applied to query set. 

𝑄𝑢𝑒𝑟𝑦(𝑄,𝑀𝑒𝑚𝑜𝑟𝑦(𝑋, 𝑌)): the query set with attention to the memory set. 

𝑆𝑒𝑡2𝑉𝑒𝑐(𝑄𝑢𝑒𝑟𝑦(𝑄,𝑀𝑒𝑚𝑜𝑟𝑦(𝑋, 𝑌))): the query set to a vector representation. 

4. Experiment 

4.1 Experimental Dataset 

In this study, we used four key data sets, namely Meteorological Dataset, GPS Trajectory Dataset, 

Energy Consumption Dataset and Event Arrangement Dataset ( Event Arrangement Dataset). These 

datasets play an important role in research on carbon emissions management in distance runners and 

are described below. 

Meteorological data sets are one of the key components in studying carbon emissions 

management in distance runners. This data set includes a variety of meteorological information, such 

as temperature, humidity, precipitation, etc. This information is crucial for long-distance runners to 

choose optimal training times and conditions, as different meteorological conditions may affect 

athletes' energy expenditure and carbon emissions. Sources of data sets include weather stations, 

satellite observations, and weather prediction models[41]. The time span typically covers multiple 

years to capture seasonal and annual variations in meteorological variability. This data set is suitable 

for analyzing the impact of meteorological conditions on carbon emissions during athletes' training 

and competition activities. 

The GPS trajectory data set contains movement trajectory data of long-distance runners. This 

data is typically recorded by GPS devices, including Global Positioning System (GPS) watches, 

smartphone apps, and more. GPS trajectory data provides long-distance runners’ location information 

during training and competition activities, including longitude, latitude, and altitude. This is crucial 

for estimating the distance and speed an athlete travels, as they directly impact the calculation of 

carbon emissions[42]. Datasets typically include large amounts of time series data to record an 

athlete's activity history. This dataset is suitable for analyzing athletes’ carbon emissions, particularly 

through information such as distance and speed. 

The energy consumption data set includes energy consumption data used by distance runners 

during training and competition. These data usually include energy consumption information of sports 

equipment (such as running shoes, bicycles), such as energy consumption, fuel consumption, etc. 
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Energy consumption data are important for estimating carbon emissions because they directly reflect 

the energy used by athletes during their activities[43]. Datasets typically include a variety of energy 

consumption data to cover different types of exercise equipment and activities. This dataset is suitable 

for analyzing athletes’ carbon emissions, specifically through the measurement of energy 

consumption. 

The event schedule data set includes information such as the time, location, and size of long-

distance running events. This information is critical to optimizing competition arrangements and 

reducing carbon emissions[44]. The data set includes detailed information on various events, such as 

marathons, half marathons, cross-country races, etc. The time span typically spans multiple years to 

include a variety of different types of competitions. This data set is suitable for helping long-distance 

runners and event organizers optimize event arrangements and reduce carbon emissions. 

4.2 Experimental Setup and Details 

This paper builds a ResNet-SAN model and integrates the SSA algorithm to optimize the model, 

which is used to simulate and estimate the carbon emissions of long-distance runners in training and 

competition activities, help athletes choose environmentally friendly training equipment, optimize 

travel and event arrangements, thereby reducing carbon footprints and improving sustainability and 

environmental friendliness. The experimental settings and details are as follows: 

During the data cleaning process, this paper processed the outliers and missing values in the 

dataset, especially in the meteorological, GPS trajectory, energy consumption and event schedule 

datasets, and removed unreasonable data points such as abnormal temperature values or invalid GPS 

coordinates. At the same time, missing data is processed by interpolation or filling methods to ensure 

the integrity of the dataset. In terms of data standardization, the temperature and humidity features in 

the meteorological data are standardized using the mean and standard deviation to ensure that they 

are on the same scale. For features such as location coordinates and speed in the GPS trajectory data, 

they are normalized and mapped to the range of 0 to 1. Then, the data is divided into training set, 

validation set and test set at a ratio of 70%, 15% and 15% to ensure that there is sufficient data support 

for model training, validation and testing. 

In this paper, the initial learning rate is set to 0.001 during the training process to control the step 

size of the gradient descent, and the learning rate scheduling strategy is used to gradually reduce the 

learning rate to reduce the risk of overfitting. The maximum number of iterations is set to 100, which 

is based on empirical judgment to ensure that the model has sufficient training time. In each iteration, 

we evaluate the performance of the model on the validation set and the training set, and analyze the 

training loss and validation loss to evaluate the generalization ability of the model. In terms of model 

architecture design, the ResNet-SAN model mainly consists of two parts, ResNet and SAN. The 

ResNet part is used to process time series data, and the SAN part enhances the representation and 

understanding of data. In the design process, we use pre-trained ResNet weights to accelerate model 

convergence and customize the SAN configuration suitable for carbon emission estimation tasks. The 

self-attention mechanism and residual connection of the SAN part help the model better understand 

the features and associations in time series data. During the model training process, through multiple 
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rounds of iterations, each round includes forward propagation, backpropagation and parameter update, 

the model parameters are adjusted using the training set data to minimize the loss function. 

We evaluate the performance and generalization ability of the model by the K-fold cross-

validation method. The dataset is divided into K subsets, one subset is used for validation each time, 

and the other K-1 subsets are used for training the model. We choose K=5 to balance validation 

accuracy and computational efficiency. In the performance evaluation, indicators such as root mean 

square error (RMSE) and mean absolute error (MAE) are used to quantify the difference between the 

model prediction value and the actual value and its overall fit. 

In the ablation experiment, we analyzed the impact of different parts of the ResNet-SAN model 

on the model performance. First, a ResNet ablation experiment is conducted to gradually remove the 

ResNet part and use only the SAN part for carbon emission estimation to determine the importance 

of ResNet for time series data modeling and its contribution to carbon emission estimation. Next, a 

SAN ablation experiment is conducted to gradually remove the SAN part and use only the ResNet 

part for carbon emission estimation to evaluate the role of SAN in the representation and 

understanding of time series data and its value to carbon emission estimation. Finally, an SSA ablation 

experiment is conducted to analyze its role in model optimization by excluding the SSA mechanism, 

and compare it with the model combined with the SSA mechanism to evaluate the degree of 

improvement of SSA on model performance. 

In the comparative analysis section, we compared the performance differences between the 

ResNet-SAN model and other traditional carbon emission estimation methods. Some classic carbon 

emission estimation models were selected as comparison objects, including linear regression, rule-

based methods, and traditional machine learning models. These methods usually rely on manual 

feature engineering and rule-based rule making, and the model complexity is relatively low. We ran 

these traditional methods and compared them with the performance of the ResNet-SAN model to 

evaluate the advantages of deep learning methods in carbon emission estimation. 

In the model evaluation stage, we used a variety of performance indicators to comprehensively 

evaluate the accuracy and efficiency of the ResNet-SAN model to ensure its effectiveness in carbon 

emission estimation for long-distance runners. In the evaluation of model accuracy, we used 

indicators such as MAE, MAPE, RMSE and MSE. 

4.3 Experimental Result and Discussion 

In Table 2 and Table 3, we conducted an extensive comparison of various models' performance 

across the Meteorological Dataset, GPS Trajectory Dataset, Energy Consumption Dataset, and Event 

Arrangement Dataset. Across the four datasets, our model (Ours) performs well on every metric. For 

the Meteorological Dataset, our model achieved the lowest MAE (16.31), the lowest MAPE (7.21%), 

the lowest RMSE (3.25), and the lowest MSE (5.21). Our model demonstrates superior accuracy in 

estimating carbon emissions, particularly evident in meteorological data analysis. On the GPS 

Trajectory Dataset, our model showcased remarkable performance, achieving the lowest MAE 

(20.05), MAPE (5.88%), RMSE (2.64), and MSE (3.13). Our model demonstrates high accuracy in 

estimating carbon emissions from GPS trajectory data as well. On the Energy Consumption Dataset, 
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it exhibited strong performance, with the lowest MAE (16.98), MAPE (6.68%), RMSE (3.07), and 

MSE (6.07). The results indicate that our model excels in providing precise estimates, particularly 

concerning energy consumption data. Finally, for the Event Arrangement Dataset, the Ours model 

still achieved the lowest MAE (15.08), the lowest MAPE (8.29%), the lowest RMSE (3.51), and the 

lowest MSE (6.01). This strongly suggests that our model also provides excellent performance when 

processing event scheduling data. Overall, from the comprehensive performance of the four data sets, 

our model is significantly better than other models in all indicators, demonstrating strong carbon 

emission estimation capabilities.  

Figure 5 visually represents the data presented in the table, further emphasizing the outstanding 

performance of our method across different datasets. The above experimental results show that our 

model not only has huge advantages in the accuracy of carbon emission estimation, but also performs 

well in computational efficiency, with shorter inference time and training time. 

Table 2. The comparison of different models in different indicators comes from Meteorological 

Dataset and GPS Trajectory Dataset. 

Table 3. The comparison of different models in different indicators comes from Energy Consumption 

Dataset and Event Arrangement Dataset. 

Model 
Energy Consumption Dataset Event Arrangement Dataset 

MAE MAPE RMSE MSE MAE MAPE RMSE MSE 

xiaohong 41.44 14.32 4.82 18.36 25.5 14.91 6.34 16.67 

zhang 21.31 12.58 4.3 21.72 49.35 9.9 8.39 27.75 

liu 36.8 8.93 6.77 17.81 36.49 12.06 8.19 27.16 

shen 44.63 12.16 6.05 27.86 26.05 14.94 5.91 23.69 

lee 35.32 10.88 7.83 17.28 32.58 8.79 6.39 14.05 

tang 29.5 13.99 8.36 19.17 39.39 15.4 6.99 16.76 

Ours 16.98 6.68 3.07 6.07 15.08 8.29 3.51 6.01 

 

Model 
Meteorological Dataset GPS Trajectory Dataset 

MAE MAPE RMSE MSE MAE MAPE RMSE MSE 

xiaohong[45] 47.39 9.24 5.57 24.89 32.42 13.22 7.98 19.61 

zhang[46] 39.29 10.37 5.37 26.11 40.97 9.41 5.11 22.64 

liu[47] 26.78 10.45 8.22 28.61 44.46 9.86 5.51 30.36 

shen[48] 33.47 10.55 6.07 24.43 39.19 10.03 8.05 17.09 

lee[49] 39.89 11.47 5.08 20.67 46.07 12.56 8.52 12.83 

tang[50] 30.97 13.27 6.78 29.27 30.31 8.45 7.12 19.18 

Ours 16.31 7.21 3.25 5.21 20.05 5.88 2.64 3.13 
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Figure 5. Model accuracy verification comparison chart of different indicators of different models.. 

As shown in Table 4 and Table 5, we conducted an in-depth comparison of the performance of 

different models on Meteorological Dataset, GPS Trajectory Dataset, Energy Consumption Dataset 

and Event Arrangement Dataset. Our model (Ours) stands out on several key metrics with its low 

parameter count, high inference efficiency, and fast training time. For the Meteorological Dataset, the 

Ours model has the lowest parameter amount (337.13M), the lowest computational complexity 

(3.56G FLOPs), the lowest inference time (5.36ms), and the shortest training time (326.47s). This not 

only illustrates the efficiency of our model, but also demonstrates its significant advantages when 

processing meteorological data. On the GPS Trajectory Dataset, the Ours model also performed well, 

with the lowest number of parameters (317.18M), the lowest FLOPs (3.64G), the lowest inference 

time (5.65ms), and the shortest training time (336.53s). This further confirms the efficiency of our 

model in processing GPS trajectory data. For the Energy Consumption Dataset, our model continues 

to lead, with the lowest number of parameters (317.76M), the lowest computational complexity 

(3.66G FLOPs), the lowest inference time (5.65ms), and the fastest training time (335.11s) ). This 

emphasizes the superior performance of our model in processing energy consumption data. Finally, 

in the Event Arrangement Dataset, the Ours model maintained the lowest parameter amount 

(325.45M), the lowest FLOPs (3.52G), the lowest inference time (5.37ms), and the shortest training 

time (325.45s). This once again highlights the efficiency of our model in event scheduling data.  

Through the visual comparison of data tables and charts, as shown in Figure 6, our model not 

only excels in the accuracy of carbon emission estimation, but also achieves superior performance in 

key performance indicators such as parameter size, computational complexity, inference time, and 

training time. Significant advantages. 
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Table 4. The comparison of different models in different indicators comes from Meteorological 

Dataset and GPS Trajectory Dataset.. 

Table 5. The comparison different models in different indicators comes from Energy Consumption 

Dataset and Event Arrangement Dataset. 

Model 

Energy Consumption Dataset Event Arrangement Dataset 

Parameter

s 

(M) 

Flop

s 

(G) 

Inferenc

e Time 

(ms) 

Trainnin

g Time 

(s) 

Parameter

s 

(M) 

Flop

s 

(G) 

Inferenc

e Time 

(ms) 

Trainnin

g Time 

(s) 

xiaohon

g 

512.30 5.87 8.22 537.64 568.31 6.04 9.69 485.94 

zhang 657.47 8.06 12.95 676.29 688.24 7.65 14.03 766.55 

liu 610.32 4.70 8.39 430.57 577.91 6.50 7.21 431.16 

shen 651.74 7.59 9.73 649.27 714.79 7.37 13.06 750.08 

lee 496.13 4.36 7.33 480.69 462.45 5.01 8.01 456.70 

tang 336.82 3.56 5.33 325.45 319.82 3.66 5.62 336.06 

Ours 336.85 3.52 5.37 325.45 317.76 3.66 5.65 335.11 

 

Model 

Meteorological Dataset GPS Trajectory Dataset 

Parameter

s 

(M) 

Flop

s 

(G) 

Inferenc

e Time 

(ms) 

Trainnin

g Time 

(s) 

Parameter

s 

(M) 

Flop

s 

(G) 

Inferenc

e Time 

(ms) 

Trainnin

g Time 

(s) 

xiaohon

g 

506.14 5.81 8.65 468.59 522.96 5.29 9.79 602.10 

zhang 745.23 8.40 10.49 716.45 632.86 7.93 12.88 675.71 

liu 641.51 3.94 12.40 629.79 364.51 6.58 7.24 700.03 

shen 688.66 7.32 10.35 672.63 651.06 7.85 10.35 670.65 

lee 490.65 4.83 6.78 466.95 409.87 5.29 7.03 410.63 

tang 336.75 3.52 5.35 327.00 319.46 3.66 5.64 337.69 

Ours 337.13 3.56 5.36 326.47 317.18 3.64 5.65 336.53 
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Figure 6. Model efficiency verification comparison chart of different indicators of different models. 

As shown in Table 6 and Table 7, we conducted ablation experiments with different 

configurations of the ResNet-SAN module, and evaluated multiple performance indicators for the 

Meteorological Dataset, GPS Trajectory Dataset, Energy Consumption Dataset, and Event 

Arrangement Dataset. On the Meteorological Dataset, our model (Ours) achieved the lowest MAE 

(11.10), MAPE (5.21%), RMSE (2.53) and MSE (11.08), far better than other models. This shows 

that our ResNet-SAN module achieves the best prediction performance on meteorological datasets. 

On the GPS Trajectory Dataset, our model once again performs well, with the lowest MAE (18.99), 

MAPE (5.50\%), RMSE (4.08) and MSE (9.23), clearly ahead of other models. This shows the 

superior performance of our model in prediction of GPS trajectory data. For the Energy Consumption 

Dataset, the Ours model also achieved the lowest MAE (13.54), MAPE (8.15%), RMSE (2.90) and 

MSE (10.63), and performed outstandingly in modeling energy consumption data. Finally, in the 

Event Arrangement Dataset, our model maintained the lowest MAE (18.25), MAPE (5.68%), RMSE 

(3.57), and MSE (5.21), once again proving the excellent performance of the ResNet-SAN module. 

Through the visual comparison of data tables and charts, as shown in Figure 7, our ResNet-SAN 

module performs excellently under various indicators, proving its versatility and efficiency in 

different fields and data sets. 

Model 
Meteorological Dataset GPS Trajectory Dataset 

MAE MAPE RMSE MSE MAE MAPE RMSE MSE 

SAN+SSA 29.60 12.43 6.77 21.71 45.81 9.43 5.50 20.21 
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Table 6. Ablation experiments on the module comes from Meteorological Dataset and GPS Trajectory 

Dataset. 

Table 7. Ablation experiments on the module comes from Energy Consumption Dataset and Event 

Arrangement Dataset. 

Model 
Energy Consumption Dataset Event Arrangement Dataset 

MAE MAPE RMSE MSE MAE MAPE RMSE MSE 

SAN+SSA 21.51 11.17 5.98 30.34 48.52 11.72 5.42 13.72 

ResNet+SSA 44.74 12.45 7.33 19.51 43.61 8.71 6.61 14.53 

ResNet+SAN 29.55 9.71 5.72 20.25 45.12 12.34 5.48 16.30 

ALL 13.54 8.15 2.90 10.63 18.25 5.68 3.57 5.21 

 

 

Figure 7. Ablation experiments on the ResNet-SAN module. 

As shown in Table 8 and Table 9, we conducted ablation experiments on the Cross SSA module 

using different data sets and analyzed various performance indicators. On the Meteorological Dataset, 

Ours model significantly outperforms other methods in terms of number of parameters (208.24M) 

and computational complexity (186.6 GFlops). Furthermore, our model also performs well in terms 

of inference time (205.07 ms) and training time (223.78 s), which is significantly faster than other 

methods. In the GPS Trajectory Dataset, our model again has a lower number of parameters (178.9M) 

and computational complexity (174.48 GFlops). Compared to other methods, our model is 

ResNet+SSA 37.03 10.54 6.23 29.92 25.87 8.48 7.91 13.65 

ResNet+SAN 26.32 11.49 6.33 22.74 29.69 12.54 6.11 19.57 

ALL 11.10 5.21 2.53 11.08 18.99 5.50 4.08 9.23 
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significantly more efficient in terms of inference time (195.27 ms) and training time (123.12 s). In 

the Energy Consumption Dataset, the Ours model has the lowest number of parameters (175.86M) 

and computational complexity (119.1 GFlops), and also performs well in terms of inference time 

(230.22 ms) and training time (187.98 s). Finally, in the Event Arrangement Dataset, our model 

continues to maintain low parameter count (208.95M) and computational complexity (220.24 

GFlops), while performing well in inference time (208.68 ms) and training time (200.36 s).  

Through the visual comparison of data tables and charts, as shown in Figure 8, our Cross SSA 

module performs excellently under various performance indicators, showing its efficiency and 

versatility in different data sets and application fields. These results highlight the advantages of our 

approach and provide a powerful solution for cross-domain tasks. 

Table 8. The comparison of SSA module comes from Meteorological Dataset and GPS Trajectory 

Dataset. 

Table 9. The comparison of the SSA module comes from Energy Consumption Dataset and Event 

Arrangement Datase. 

Model 

Energy Consumption Dataset Event Arrangement Dataset 

Paramete

rs 

(M) 

Flops 

(G) 

Inferen

ce Time 

(ms) 

Trainnin

g Time 

(s) 

Parameter

s 

(M) 

Flops 

(G) 

Inferen

ce Time 

(ms) 

Trainnin

g Time 

(s) 

Adam 383.98 310.61 307.48 384.61 280.84 260.79 330.26 386.59 

RMSprop 371.05 268.25 251.57 281.14 375.2 298.06 214.06 398.28 

Bayesian 308.96 307.4 247.72 291.06 351.53 291.45 389.87 404.97 

SSA 175.86 119.1 230.22 187.98 208.95 220.24 208.68 200.36 

 

Model 

Meteorological Dataset GPS Trajectory Dataset 

Paramete

rs 

(M) 

Flops 

(G) 

Inferen

ce Time 

(ms) 

Trainnin

g Time 

(s) 

Parameter

s 

(M) 

Flops 

(G) 

Inferen

ce Time 

(ms) 

Trainnin

g Time 

(s) 

Adam 374.37 273.03 250.57 311.86 351.31 385 222.66 395.33 

RMSprop 396.81 307.62 260.23 282.61 278.45 360.74 387.27 358.73 

Bayesian 333.87 371.84 263.29 314.39 346.06 351.19 269.05 367.11 

SSA 208.24 186.6 205.07 223.78 178.9 174.48 195.27 123.12 
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Figure 8. Comparison experiments on the SSA module 

5. Conclusions 

In this manuscript, we introduce a pioneering deep-learning model designed to address key 

challenges in cross-domain applications. Our model integrates data from diverse domains, achieving 

efficient feature learning and seamless information transfer across disparate datasets through the 

incorporation of adaptive mechanisms and cross-domain self-attention modules. Thoroughly 

experimentally validated, our approach exhibits enhanced performance across a spectrum of domains 

and datasets. The model excels in Meteorological, GPS Trajectory, Energy Consumption, and Event 

Arrangement datasets, significantly reducing parameter count and computational complexity while 

simultaneously boosting inference and training efficiency. 

While our model demonstrates robust performance across various datasets and use cases, we 

recognize its potential limitations. Firstly, its generalization capabilities in handling extreme or outlier 

cases may require refinement, as our experiments primarily target average performance benchmarks. 

Secondly, further investigation is necessary to expand its applicability to additional fields, ensuring 

adaptability to a broader array of cross-domain tasks. Lastly, despite its commendable performance 

in training and inference efficiency, there is scope for optimization, particularly in resource-

constrained settings. 

This paper's contribution heralds a novel deep learning methodology for cross-domain tasks with 

promising application prospects. Future studies can focus on enhancing its generalization 
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performance to align with the demands of diverse real-world scenarios. Moreover, the exploration of 

additional domains and datasets can further substantiate the versatility of our approach. The 

significance of this work lies in offering an effective methodology for cross-domain task research and 

inspiring new avenues for researchers in related domains. We anticipate that this research will 

significantly influence future advancements in deep learning and cross-domain data analysis, 

equipping practitioners with robust tools and methodologies to tackle practical challenges. 
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