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ABSTRACT 

Since the inception of the ImageNet Challenge in 2010, numerous innovative deep CNNs (D-

CNNs) have been developed. These models typically require extensive datasets for training, making 

their application to smaller datasets infrequent due to overfitting risks. This paper introduces an 

adapted deep neural network model designed to effectively fit a small dataset. The main contribution 

of this work lies in demonstrating the effective use of transfer learning and fine-tuning techniques to 

adapt pre-trained deep learning models, such as VGG16, VGG19, Inception V3, and Inception-

ResNetV2, for small-scale image classification tasks. By incorporating data augmentation, dropout 

regularization, and selective layer freezing, the study achieves high classification accuracy while 

minimizing overfitting. This approach provides a practical solution for leveraging advanced deep 

learning architectures in scenarios with limited labeled data.  

 

Keywords: Image Classification, Deep Learning, Computer Vision 

 

1. Overview 

Deep learning has profoundly influenced well-structured perception and classification tasks, 

often requiring vast datasets to effectively train models. The success of DNNs is largely attributed to 

the large and diverse training datasets. Over recent years, leading models have surpassed human 

abilities in object recognition, showcasing deep learning's maturity and widespread application. 

However, achieving high performance with small datasets remains challenging. Previous research has 

primarily focused on developing deep learning models for large-scale datasets, such as ImageNet, 

with less emphasis on addressing the unique challenges posed by small datasets. Existing studies 

often highlight the risks of overfitting and poor generalization in small data scenarios but provide 

limited practical solutions for effectively adapting advanced deep learning architectures to such 

contexts. For instance, while transfer learning has been explored, many approaches lack detailed 

insights into optimizing pre-trained models for small datasets or mitigating the challenges of domain-

specific features and limited sample diversity. 

This research aims to address these gaps by focusing on the effective application of transfer 
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learning and fine-tuning techniques to small datasets. By leveraging pre-trained deep learning models, 

such as VGG16, VGG19, Inception V3, and Inception-ResNetV2, this study investigates how to adapt 

these architectures for small-scale image classification tasks. The study emphasizes strategies such 

as selective layer freezing, data augmentation, and dropout regularization to mitigate overfitting while 

maximizing model generalization. The focus is to provide a practical framework for utilizing 

advanced deep learning models in small data contexts, which are increasingly common in real-world 

applications where labeled data is limited. 

1.1 Introduction 

CNNs have become pivotal model in deep learning, primarily used for image analysis. 

Originating in the 1980s [1], CNNs gained momentum with the advent of GPUs [2] in the early 2000s. 

Dan, 2021 introduced CNN trained on GPUs, achieving notable test error rates on datasets like 

MNIST, NORB, and CIFAR10 [3]. In 2012, Krizhevsky's model triumphed in the ImageNet 

Challenge [4, 5], utilizing 1.2 million high-resolution images and an architecture featuring eight 

weight layers, including 5 Conv and 3 FC layers, alongside the ReLU nonlinearity [6]. Following 

AlexNet's success, ZFNet was introduced in 2013, enhancing AlexNet's hyperparameters for 

improved performance [7]. GoogleNet, the 2014 ImageNet Challenge winner, featured a 22-layer 

network, significantly reducing parameters from AlexNet's 60 million to 4 million. ResNet brings a 

skip connections, allowing input passage between layers without modification, leading to a 152-layer 

network that won the ImageNet Challenge [8]. These architectures highlight the importance of depth 

in achieving superior CNN performance [9]. 

While GoogleNet, VGG, and ResNet can be trained on large ImageNet datasets, such massive 

datasets are often unavailable. Acquiring large datasets can be costly for specific tasks [10]. For 

smaller datasets, employing technology that works with deep networks is efficient, achieving high 

performance through transfer learning. Transfer learning involves applying pre-trained model 

knowledge to downstream tasks without starting from the beginning. Transfer learning is a method 

that transfers knowledge from one completed task to a new one. Fine-tuning, as a subset of transfer 

learning, typically focuses on retraining certain layers of a pre-trained model to adapt to the 

characteristics of the new dataset. In this work, transfer learning is implemented by leveraging deep 

learning models pre-trained on the large-scale ImageNet dataset, such as VGG16, VGG19, Inception 

V3, and Inception-ResNet V2. Fine-tuning involves unfreezing and retraining specific layers in these 

models to better capture features of the smaller target dataset. CNNs like ResNet, GoogleNet, and 

VGG, can be pre-trained on large ImageNet classification, with later layers capturing more complex 

structures. The final layer classifies images into categories. Thus, transfer learning can be applied to 

small datasets, speeding up optimization by retaining relevant lower-layer features and mitigating 

overfitting through data augmentation & dropout techniques. 

2. Introduction to CNN and ML 

This section provides an introduction to machine learning, transfer learning, and various CNN 

models. 
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2.1 Background of ML 

In recent years, ML, DL, and AI have been extensively covered in numerous articles. Originating 

in the 1950s, artificial intelligence emerged from the computer science, exploring whether digital 

circuits could emulate human thinking. AI encompasses ML and DL, among other disciplines. ML 

focuses on whether computers could autonomously solve tasks. In classical programming, rules and 

data yield answers, while in machine learning, data and answers generate rules, which are then applied 

to downstream data for new tasks. Essentially, a ML system learns by being exposed to task-related 

examples to derive rules that conduct automation. Deep learning, a machine learning subset, uses 

consecutive layers to represent increasingly complex features, driven by experimental findings rather 

than theory. 

2.2 CNNs 

CNN models comprise convolutional, pooling, ReLU, fully connected, and final loss calculation 

layers. These components work together to extract hierarchical features from input data. The 

convolutional layer applies filters (kernels) to input images to detect patterns like edges, textures, and 

more complex structures as layers deepen. Pooling layers, such as max pooling or average pooling, 

reduce the spatial dimensions of feature maps, preserving the most critical information while 

minimizing computational load. The ReLU (Rectified Linear Unit) activation function introduces 

non-linearity, allowing the model to capture complex feature relationships across layers. Together, 

these components enable CNNs to progressively extract and combine low-level features (e.g., edges) 

into high-level abstractions (e.g., shapes or objects), forming the basis for effective feature learning. 

The fully connected layer connects all previous layer activations, flattening the output to represent 

high-level data features. The loss layer quantifies the difference the prediction and ground-truth target.  

2.3 CNN with Deeper Architectures 

VGGNet [11] secured second place in the ImageNet Challenge, following GoogLeNet and 

leading in image localization. VGG19 is slightly superior to VGG16 but demands more memory. 

VGG16 comprises convolutional & pooling & FC layers, totaling 16 layers in five blocks, while each 

block has a max pooling layer. VGG19, similar to VGG16, includes 19 layers, adding another CONV 

layers in the extra blocks. These deep CNNs enable VGG19 & VGG16 to excel in vision tasks. 

GoogLeNet, the 2014 ILSVRC winner, features a 22-layer network with an inception module 

[12]. It underscores the significance of depth while using 12 times fewer parameters than AlexNet, 

achieving near-human performance. GoogLeNet's key innovation is the parallel combination of 1x1, 

3x3, and 5x5 convolutional filters and 1x1 convolutional kernels to reduce computation. Subsequent 

research led to Inception V2, which normalizes feature map responses by their mean and standard 

deviation. Inception V3 further refines performance by employing 3x3 and 1x1 filters instead of 5x5 

and 7x7 filters, showcasing the power of deeper models. 

Inspired by ResNet's performance [8], Google developed InceptionResNet, incorporating 

residual connections into the inception module's convolutional output [13]. This model, with 
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approximately 467 layers, accelerates training and enhances accuracy, illustrating the strength of deep 

layers. While these models excel on large datasets like ImageNet, their architectural features also 

make them particularly effective for small datasets when combined with transfer learning 

techniques[14]. For instance, ResNet's use of skip connections mitigates the vanishing gradient 

problem in deep networks, allowing efficient training even with limited data. Similarly, Inception-

based architectures optimize computational efficiency through their inception modules, which capture 

multi-scale features by combining convolutions of varying kernel sizes. These characteristics make 

models like ResNet and Inception well-suited for small datasets, as they can extract complex features 

with fewer parameters and reduced overfitting risk when appropriately fine-tuned. 

3. Related Work 

The methodology outlined in this paper intersects with multiple fields, including image 

categorization, knowledge transfer, and advanced neural network techniques, which are discussed 

briefly below. 

3.1 Vision Classification 

Choosing an appropriate method for categorizing images and efficiently leveraging diverse data 

characteristics [15] is critical for tackling image categorization problems. Similar to this approach, 

utilizes neural-network-driven feature extraction for tasks like facial recognition and detecting flaws 

in wooden materials, incorporating grouping of basic-level features. In contrast to [16], my 

methodology involves leveraging pre-trained models on substantial datasets and fine-tuning them for 

use on smaller-scale datasets, yielding significant performance advancements. 

3.2 Transfer Learning 

Developing a model entirely from scratch is uncommon due to the lack of extensive datasets. 

Instead, researchers often adopt the practice of pre-training models on large datasets such as ImageNet 

and subsequently extracting features for other applications. Knowledge transfer is introduced as a 

strategy to improve efficiency and conserve time. However, transfer learning is not without 

limitations. When the source and target domains differ significantly, negative transfer can occur, 

where knowledge from the source task adversely impacts performance on the target task. To mitigate 

this, careful selection of source models and task-specific fine-tuning strategies are essential. As 

demonstrated in [17], transferring learned knowledge enhances outcomes while minimizing the need 

for new data collection. The study in [17] addresses key questions: "what knowledge should be 

transferred," "how to achieve effective transfer," and "when transfer is appropriate." "What to 

transfer" involves determining specific elements to transfer across domains, aligning with the 

considerations for "how to transfer." "When to transfer" evaluates the suitable circumstances to apply 

knowledge transfer. These principles guide my approach to incorporating transfer learning into my 

work. Moreover, [18] discusses the obstacles linked to transfer learning. As described in [18], the 

goal is to improve competencies in the target task by leveraging insights from a source domain. A 

critical challenge lies in fostering a positive transfer while avoiding undesirable transfer, which may 
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occur when the tasks are loosely related. Therefore, it is important to identify and exclude irrelevant 

information during the training process, ensuring transfer learning performs comparably or better than 

its absence. [18] provides a framework for addressing these challenges and avoiding negative transfer. 

Transfer learning supports the learning process in a new task by utilizing knowledge derived 

from a previously solved, related problem. In computer vision, case studies like [19] and [20] 

highlight significantly enhanced classification accuracy for objects[21]. Previous research has 

demonstrated that models such as ResNet and Inception consistently outperform shallower 

architectures on small datasets due to their unique design choices. For example, ResNet’s residual 

connections enable the network to maintain feature quality across its depth[22], a critical advantage 

when adapting pre-trained models to small datasets. Meanwhile, Inception’s multi-branch design 

efficiently handles feature extraction at multiple scales, making it versatile for datasets with limited 

samples but diverse feature representations[23-25]. These architectural strengths underscore the 

rationale for selecting these models in this study, as they effectively balance model complexity and 

generalization performance. 

In alignment with my research, studies by [26], investigate the application of deep neural 

networks for image categorization tasks using large-scale data sources. Our approach adapts pre-

trained models for use with smaller datasets, mitigating the risk of significant overfitting. Transfer 

learning has been applied in medical imaging tasks, similar to the methods employed in my work. 

Other investigations suggest utilizing representations extracted from large-scale image datasets with 

CNN architectures, employing regularization techniques like dropout and fine-tuning [27]. However, 

these studies predominantly focus on transfer learning for individual identification in extensive 

datasets. In this report, I specifically focus on transfer learning techniques tailored for smaller datasets. 

3.3 Deep Learning 

The growing focus on neural networks with multiple layers has led to significant advancements 

in deep learning. Researchers have explored both guided approaches and unguided methodologies 

[28, 29]. 

Advanced neural networks facilitate the development of models capable of extracting intricate 

data features [30]. Notable architectures, such as AlexNet, VGGNet, GoogleNet[31], ResNet, 

ResNeXt [32], RCNN (Region-Based CNN) [33], and YOLO (You Only Look Once) [34], showcase 

diverse applications of deep learning. This paper emphasizes the use of VGG, GoogleNet, and ResNet. 

While these models demonstrate strong capabilities, their performance with limited datasets 

remains an area of exploration. This challenge is especially apparent when adapting these 

architectures to constrained environments. The VGG-16 model, a highly structured neural network, 

has been customized for tasks like classifying images in compact dataset[35]. This work aims to 

highlight how deep convolutional models can effectively handle small datasets, including CIFAR-10, 

through tailored and practical changes. For example, [34] applies Batch Normalization and robust 

dropout techniques to improve network performance. Our approach includes enhanced preprocessing 

steps, such as data augmentation, to improve model robustness. 
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4. Methods 

A deep convolutional network (CNN) is employed to analyze a small-scale Kaggle dataset. The 

following sections outline the model’s structure and implementation details. This study involves 

classifying images of dogs and cats from a dataset of 6,000 samples, distributed as follows: 3,000 for 

training, 2,000 for validation, and 1,000 for testing. The Kaggle dog vs. cat dataset was chosen for its 

representativeness of small, real-world datasets, which are commonly encountered in practical 

applications. This dataset has several characteristics that align with the paper’s central arguments 

about the challenges of small datasets: it contains a limited number of labeled images, exhibits 

significant variability in image quality (e.g., blurry or poorly scaled images), and includes instances 

of occlusion or cluttered backgrounds. These properties make it an ideal candidate for testing the 

robustness of transfer learning techniques in small data scenarios. Moreover, its binary classification 

task allows for focused evaluation of how well pre-trained models generalize to new domains with 

minimal data. Despite using less than 20% of the dataset for training, the model achieves a 

commendable accuracy of 96%. 

4.1 Model Structure 

The models selected for this study were originally trained on ImageNet, a comprehensive dataset 

containing various classes of animals and objects. These pre-trained models are adapted to suit image 

classification tasks in smaller datasets. Deep architectures, such as VGG16, VGG19, Inception V3, 

and Inception-ResNetV2, were specifically chosen for their relevance to compact-scale problems. 

4.2 DNNs 

Initially, a baseline model was developed to evaluate performance on the smaller dataset. This 

serves as a reference point for comparing pre-trained networks. For deep architectures like VGG16, 

VGG19, Inception V3, and Inception-ResNetV2, weights trained on ImageNet were imported and 

utilized. Layer configurations and final features were analyzed using model summaries. To adapt the 

pre-trained models, lower convolutional layers were frozen to preserve the general low-level features 

learned from the ImageNet dataset, such as edges and textures. A new dense classifier was added on 

top of the feature maps, along with dropout layers for regularization. Additionally, fine-tuning was 

applied to the final convolutional blocks (e.g., block5 of VGG16 and the mixed9 layer of Inception 

V3) to optimize the models for the target dataset. 

A binary classifier was subsequently integrated into these models for classification tasks. The 

training and validation accuracies were documented to assess performance. 

To further enhance results, feature extraction techniques were applied to each model. 

Recognizing the risk of negative transfer, lower convolutional layers of the pre-trained models were 

frozen to retain generalized features, while higher layers were fine-tuned to adapt to the specific 

characteristics of the target dataset. The preprocessing pipeline included data augmentation strategies, 

such as flipping and cropping, to expand the dataset size artificially and improve generalization. This 

approach addresses the limitations posed by input size constraints in small datasets. 



 Journal of Intelligence Technology and Innovation (JITI), 2025, 3(1), 58-73. 

64 

 

5.  Results 

The training process was performed on a small dataset consisting of 3,000 images for training, 

2,000 for validation, and 1,000 for testing, amounting to 6,000 total images. This dataset size presents 

challenges for a deep convolutional neural network (CNN). 

5.1 Training Results 

Experiments were conducted on Google Colab using a virtual GPU. Initially, the data was 

retrieved from Kaggle, and folders were created to separate training, validation, and testing sets. 

Within each folder, the images of cats and dogs were further organized. The dataset was uploaded to 

Google Drive for execution. As the images were in JPEG format, preprocessing involved converting 

them into RGB pixel matrices using the Keras ImageDataGenerator utility in TensorFlow. Five 

models were evaluated: a baseline model, VGG16, VGG19, Inception V3, and Inception-ResNetV2. 

For the latter models, techniques like data augmentation, feature extraction, and fine-tuning were 

incorporated. The performance metrics used were accuracy and loss, enabling an assessment of model 

effectiveness and overfitting. 

The baseline model, comprising a 5-layer CNN, was trained without using dropout or data 

augmentation. This simple setup served as a benchmark to compare against deeper models. As shown 

in Figure 5.1, the baseline model delivered only 73% accuracy on test data, with significant overfitting 

evident from the gap between training and validation performance metrics. 

  

Figure 1. Baselines’ Training Results. 

 

I initialized pre-trained weights for the deeper models and added a dense classifier with dropout 

at the top of the final feature maps. The feature map dimensions were (4, 4, 512) for VGG16 and 

VGG19, and (3, 3, 2048) or (3, 3, 1536) for Inception V3 and Inception-ResNetV2, respectively. 

These feature maps served as input to the applied layers for training. When running these models on 

the smaller dataset, all outperformed the baseline, though significant overfitting persisted, 

emphasizing the need for data augmentation. 

While using feature extraction, overfitting remained a challenge, even as accuracy improved. To 

mitigate this, data augmentation techniques were applied, such as random flips and rotations. In 

addition to accuracy, precision, recall, and F1-score were analyzed to better understand the model’s 

behavior. For example, while InceptionResNetV2 achieved an F1-score of 95.4% on the test set, its 

recall of 96.3% suggests a strong ability to identify true positives, though its precision of 94.5% 
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indicates occasional misclassification of false positives. Misclassification analysis revealed common 

issues, such as images where dogs or cats were partially occluded or featured in non-standard poses. 

These insights underscore the challenges of small datasets and the importance of advanced techniques 

like fine-tuning and dropout for improving model robustness. 

Additionally, the convolutional layers of the pretrained models were frozen to maintain 

previously learned weights. Each model ran for approximately 20 minutes on a virtual GPU in Google 

Colab. This approach improved both accuracy and generalization. For VGG16 and VGG19, 

validation accuracy reached 90%, though some degree of overfitting persisted. Inception V3 and 

Inception-ResNetV2 achieved validation accuracy around 95%, though with a slight increase in loss, 

indicating room for further optimization. 

To enhance the performance further, I fine-tuned the models. For VGG16 and VGG19, the final 

convolutional and pooling layers were unfrozen, enabling the adjustment of feature extraction weights. 

Similarly, dropout and fully connected layers were fine-tuned. For Inception V3, the mixed9 layer 

and subsequent layers were optimized, while for Inception-ResNetV2, block 10 mixed was selected 

for fine-tuning. The training time averaged around 15 minutes per model on Google Colab. After fine-

tuning, the models displayed significant improvements, and overfitting was further reduced. For 

VGG16 and VGG19, validation accuracy improved, and loss decreased, though some variations in 

loss indicate potential for future refinement. Inception V3 and Inception-ResNetV2 achieved the 

highest accuracy levels, though validation loss was slightly higher, suggesting a need for additional 

adjustments in later research.. 

5.2 Results 

Figures 1 through 13 illustrate the experimental results. When applying feature extraction with 

pretrained deep models to this small dataset, these models achieved significantly better accuracy than 

the baseline while requiring less computational effort. This indicates that deep architectures are 

advantageous for tasks requiring precision under limited resource conditions. 

By employing data augmentation and dropout with deep networks, these models achieved 

superior performance. In my analysis, the depth of these architectures was key to achieving high 

accuracy, while techniques like augmentation and dropout successfully minimized overfitting. This 

demonstrates that even small datasets can benefit from the strengths of advanced deep learning 

architectures. 

5.3 Training on baseline 

As shown in Figure 1, the baseline model is straightforward to train, delivering results relatively 

quickly. However, its performance, achieving only 75% accuracy, significantly lags behind the deeper 

models’ performance, highlighting the limitations of shallow architectures in complex tasks. 

5.4 VGG16 and VGG19 and VGG16 Training Results 

Figures 2 and 3 demonstrate noticeable performance improvements relative to the baseline. 

Despite this, overfitting persists, as training accuracy exceeds validation accuracy, and training loss 

is lower than validation loss. The test accuracy for both VGG16 and VGG19 reaches 83%. 
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Figure 2. VGG16’s Training Result 

 

 

Figure 3. VGG19’s Training Result. 

 

5.5 With data augmentation, VGG16 and VGG19 and VGG16 Training Results 

After applying data augmentation techniques, test accuracies improve to approximately 85.2% 

for VGG19 and 88.3% for VGG16. This approach significantly reduces overfitting, as highlighted in 

Figures 4 and 5. While training accuracy is slightly less than validation accuracy, training loss 

marginally exceeds validation loss, suggesting that data augmentation minimizes overfitting. 

Additional fine-tuning, however, may further enhance accuracy levels. 

  

Figure 4. With Data Augmentation, VGG16’s Training. 
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Figure 5. With Data Augmentation, VGG19’s Training. 

 

5.6 With fine-tuning, Training on VGG19 and VGG16 

Fine-tuning the models leads to test accuracies of about 88.1% for VGG16 and 85.9% for 

VGG19. Figures 4 and 5 reveal that data augmentation coupled with fine-tuning helps mitigate 

overfitting. Training accuracy remains lower than validation accuracy, and training loss is slightly 

greater than validation loss, showing further reduction in overfitting. Fine-tuning is critical to 

achieving more precise results. 

 

  

Figure 6. VGG16 Fine-tuning Result. 

  

Figure 7. VGG19 Fine-tuning Result. 

 

5.7 InceptionResNet V2 Inception V3 Training Results 

Figures 8 and 11 illustrate that training accuracy is considerably higher than validation accuracy, 

while training loss is much lower than validation loss. Overfitting remains an issue, yet Inception V3 

and InceptionResNetV2 achieve test accuracies of 93% and 95%, respectively, showcasing their 

superior performance compared to the baseline. 

  

Figure 8. Inception V3 Training Result. 
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Figure 9. With Data Augmentation,Inception V3’s Training Result. 

 

5.8. With Data Augmentation, Inception V3 and InceptionResNet V2 Training Results  

Figures 9 and 12 indicate that training accuracy falls short of validation accuracy, and training 

loss is greater than validation loss. Data augmentation, similar to its application in VGG16 and 

VGG19, enhances model performance. Validation accuracy surpasses training accuracy, yet the loss 

values remain elevated. Improvement strategies are required to further optimize performance. 

Inception V3 and InceptionResNetV2 achieve test accuracies of 94.7% and 95.6%, respectively. 

 

Figure 10. Inception V3 Fine-tuning Result. 

 

 

 

 

  

Figure 11. InceptionResNet V2 Training Result. 
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Figure 12. Training on InceptionResNet V2 with Data Augmentation. 

 

  

Figure 13. InceptionResNet V2 Fine-tuning Result. 

 

5.9 With Fine-tuning, InceptionResNet V2 and Inception V3’s Training Results 

Figures 10 and 13 demonstrate that training accuracy falls below validation accuracy. In Figure 

10, training loss is notably lower than validation loss, yet overfitting persists. In Figure 13, while the 

training loss initially exceeds the validation loss, it eventually drops below it. Fine-tuning improves 

outcomes significantly, with InceptionResNetV2 achieving 96% test accuracy and Inception V3 

reaching 95%. Nonetheless, validation loss increases slightly, warranting additional investigation in 

subsequent research. 

5.10 Conclusion 

The results presented in the figures summarize the accuracy and loss observed during training 

and validation phases. A noticeable gap between training and validation accuracy often signals 

overfitting, while the reverse suggests underfitting. Comparing the loss values provides insight into 

model performance. When training loss surpasses validation loss, underfitting is evident, whereas 

lower training loss indicates overfitting. Figures 1, 2, 3, 8, and 11 reveal significant overfitting due to 

the dataset’s limited size. By contrast, Figures 4 and 5 illustrate notable reductions in overfitting when 

enhancements are applied. Figures 9 and 12 reveal minimal underfitting, with both models performing 

well overall. Fine-tuning improves performance further, as observed in Figures 6 and 7, though slight 

underfitting persists in Figures 10 and 13. Addressing excessive weight updates remains a priority for 

future work. 

5.11. Analysis 
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Figure 14. Test Image Analysis. 

 

The highest test accuracy achieved is 96%, with approximately 40 images incorrectly labeled. 

Figure 14 highlights challenges such as blurry and scaled-up images, animals facing away or blending 

with their surroundings, closed eyes, and obstructive fences. Additionally, the presence of humans in 

some images complicates identification. Overall, noise in the images makes distinguishing cats and 

dogs difficult. 

6. Conclusion 

This study demonstrates that advanced deep learning models such as VGG16, VGG19, Inception 

V3, and InceptionResNet V2 can be effectively utilized on small datasets consisting of 6,000 

images—3,000 for training, 2,000 for validation, and 1,000 for testing—while minimizing overfitting. 

The research focuses on applying transfer learning and fine-tuning techniques to adapt pre-trained 

models for small-scale image classification tasks. Strategies such as selective layer freezing, data 

augmentation, and dropout regularization were employed to optimize model performance and address 

challenges like overfitting. 

In the future, this framework could be extended by exploring additional pre-trained models or 

applying the proposed techniques to more diverse datasets and multi-class classification tasks. 

Furthermore, incorporating advanced optimization strategies could improve model generalization and 

scalability in real-world applications, such as medical imaging and remote sensing. Transfer learning, 

in particular, enables effective use of pre-trained CNNs for tasks with limited data by reusing 

generalized features from large-scale datasets. This capability is especially evident in tasks such as 

small-scale object classification and medical image analysis, where the availability of labeled data is 

constrained. By adapting pre-trained models, this study demonstrates that even small datasets can 

achieve high accuracy with carefully designed transfer learning strategies. 

The use of transfer learning allowed us to leverage pre-trained models on large-scale datasets, 

which provided robust low-level feature representations. Fine-tuning specific layers in the pre-trained 

models further improved the adaptability and accuracy on the small target dataset, demonstrating the 
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effectiveness of combining both strategies. As shown by the results, deep learning models can adapt 

well to small-scale datasets with careful selection and appropriate modifications. Essential techniques 

include augmenting the dataset with transformations, employing dropout layers, and performing fine-

tuning. Choosing suitable deep architectures for smaller datasets ensures better accuracy and 

performance. Although overfitting was substantially mitigated during the experiments, certain models 

faced underfitting issues, which were possibly linked to excessive dropout settings. Overall, the study 

confirms that deep neural networks can be customized effectively for small datasets by employing 

appropriate adjustments. 

6.1 Future work 

Future investigations could involve testing additional models and exploring various 

configuration adjustments (see Table 1). For example, analyzing the causes behind increased 

validation loss during fine-tuning and identifying factors contributing to underfitting. Moreover, 

examining how models such as YOLO (You Only Look Once) and RCNN (Region-Based CNN) 

perform on smaller datasets would be a valuable direction. Further optimizing models to enhance 

compatibility with constrained datasets and performing comparative analyses could yield significant 

insights for future research. 

Table1. Results Collection 
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