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ABSTRACT 

Fingertip tactile sensing is a crucial perceptual mechanism for both humans and robots, 

providing valuable data on contact detection, force feedback, and object properties such as surface 

texture, shape, and temperature. This paper presents a novel tactile sensing system that incorporates 

a six-axis force/torque sensor, combined with innovative methods to harness force and torque signals 

for enhanced tactile perception. The main contributions of this work are as follows: (1) we propose a 

new approach for determining contact positions and normals, identifying unintended movements, and 

analyzing surface texture features, (2) we introduce a technique for estimating an object's center of 

gravity (CoG), which is integrated with tactile sensing for more accurate object interaction, and (3) 

we integrate a machine learning framework using an artificial neural network to classify objects based 

on CoG estimations and tactile data. Finally, we demonstrate the effectiveness of the proposed system 

through object reconstruction examples, confirming its performance in real-world applications. 

 

Keywords: Tactile sensing, Six-axis force/Torque sensor, Contact detection, Center of gravity 

estimation, Machine learning integration, Object classification 

 

1. Introduction 

Tactile sensing is a cornerstone of robotic perception, with fingertip sensors playing an 

especially pivotal role in enhancing the dexterity and functionality of robotic hands. Over the past 

several decades, researchers have investigated a wide variety of fingertip sensors for robotic 

applications [1], [2], [3], [4]. These studies largely focus on capturing force data, a critical element 

for effective grasping and in-hand manipulation. Most sensors are designed to measure either 

localized point-contact forces or distributed forces over the contact area using mechanisms based on 

piezoelectricity, resistive, capacitive, or optical principles[5],[6]. 

Recent advancements in industrial force sensor technology have made it possible to miniaturize 

these devices so that they can be embedded directly in the fingertip[7]. For example, the DLR Hand2 

integrates a six-axis force/torque sensor into its fingertip, providing precise force and torque feedback 

that enhances the development of sophisticated planning and control algorithms[8]. 

mailto:zhongjin@umich.edu
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However, relying solely on force and torque measurements does not fully exploit the potential 

of tactile sensing. While force and torque provide essential feedback for motion control, accurate 

contact detection, localization, and the assessment of surface properties such as texture and geometry 

are equally crucial for effective object interaction[9]. 

Existing tactile sensing systems, such as the five-fingered Gifu3 hand, integrate force sensors 

with tactile sensors that track electrical current variations to detect contact events[10]. While these 

systems improve tactile perception, they still lack comprehensive techniques for analyzing surface 

texture characteristics and detecting unintended motion in real-time[11], limiting their ability to 

perform more complex tasks such as object reconstruction and precise motion planning[12]. 

Building on these gaps in previous research, this study presents a novel tactile sensing system 

that not only captures force and torque data but also enhances contact position localization, surface 

texture analysis, and unintended motion detection[13],[14]. The main focus of this research is the 

integration of a six-axis force/torque sensor with advanced algorithms that estimate an object’s 

center of gravity (CoG) and utilize tactile feedback for object identification[15]. This work aims to 

bridge the gap between low-level tactile data and higher-level object understanding, enabling more 

sophisticated robotic manipulation and interaction[16]. 

1.1 Related Work 

Over the past few decades, foundational research has explored tactile sensing that leverages 

force/torque measurements. Tsujimura et al. [17] introduced a method for pinpointing contact 

locations using an insensitive probe to capture object shape, which was later refined by Zhou et al. 

[18] by removing gravitational influences. Bicchi et al. [19] extended this work to estimate both the 

point of contact and its direction, further adapting their approach to accommodate soft-finger 

interactions. More recent studies have focused on discerning contact types through force/torque data. 

For instance, Murakami et al. [20] proposed a technique for determining the direction of a contact 

line, while Yamada et al.[21] employed a disc-shaped fingertip to extract both contact location and 

direction, introducing methods to distinguish among point, line, and planar contacts. Melchiorri et al. 

[22] tackled slip detection by developing a method that leverages force/torque signals to counteract 

both translational and rotational slips. Similarly, Jamali et al. [23] advanced texture sensing is 

achieved by integrating strain gauges and Polyvinylidene Fluoride (PVDF) films into a fingertip 

sensor, and later employed frequency-domain analysis to differentiate between textures[24],[25],[26]. 

1.2 Our Work 

Fig. 1(a) shows the prototype of our fingertip sensor, featuring a hemispherical tip made from 

half of a table tennis ball, chosen for its clear geometry, which aids in precise contact detection. 

Beneath the fingertip is a 6-axis force-torque sensor (Sunrise Instrument M3701A); its industrial-

grade construction ensures that high-precision force and torque data are reliably obtained. 
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Figure 1. Prototype of the tactile fingertip sensor. (a) A 6-axis force-torque sensor mounted under a 

half table tennis ball. (b) Fingertip's mathematical model representing its geometric and mechanical 

properties. 

 

Using these measurements, we have developed methods to determine the contact position and 

normal for point contacts. Additionally, by analyzing the force signals, the sensor can detect 

unintended motions like sliding, separation, and rolling. We further extract both frequency and 

amplitude features to perform texture analysis. The sensor has been integrated into a four-fingered 

hand, as shown in Fig.7(a), to expand its perceptual capabilities. With data from multiple fingers, we 

propose an algorithm to estimate an object’s center of gravity (CoG), complete with an analytical 

expression for error propagation in the estimation process. In addition, a neural network that utilizes 

both contact identification and CoG data is employed to classify basic objects—specifically spheres, 

cylinders, and cuboids. Finally, we present examples of object reconstruction to demonstrate the 

overall effectiveness of our approach. 

2. Determining Contact Location and Orientation 

Knowing the precise contact point and the corresponding surface normal is essential for ensuring 

grasp stability and for applying the correct contact forces during manipulation. Although many 

theoretical models assume that such data is readily available, practical sensors that can measure these 

quantities are rare. Our approach addresses this need by directly capturing the contact point and 

normal on the fingertip surface. With a hemispherical design, the contact normal is straightforwardly 

derived from the known geometry once the contact location is identified. Importantly, although our 

prototype uses a hemispherical fingertip for demonstration, this approach is applicable to any surface 

with known geometric properties. 

As illustrated in Fig.1(b), our approach combines force and moment measurements with the 

known geometry of the fingertip to accurately determine the contact location and orientation - a 

concept originally introduced in [17]. Here, we summarize the key idea. 
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Assuming a point-contact model, the contact generates a pure force, and the sensor records the 

force vector 𝑓 along with the moment 𝑚 relative to the fingertip’s world coordinate frame (see 

Fig.1(b)). When only a single contact is present, 𝑓  directly represents the contact force, and the 

moment is given by: 

𝑚 = −𝑓𝑝 ················································ [Formular 1] 

In this formulation, 𝑝 ∈ ℝ3 denotes the contact position relative to the fingertip frame, and 𝐟 ∈

ℝ3×3 represents the skew-symmetric matrix corresponding to the cross product with 𝑓. Since 𝑓 

has rank two, the general solution for p can be written as: 

𝑝 = −𝑓+𝑚+ 𝑐𝑑 ······································· [Formular 2] 

Here, 𝑓+ denotes the pseudoinverse of 𝑓, 𝑑 is a basis vector spanning the null-space of 𝑓, 

and 𝑐 is a scalar constant. Eq.2 defines a line within the fingertip frame, which intersects the fingertip 

surface at two distinct points (as depicted in Fig.1(b). Using the known surface geometry, both 

intersection points and their associated normals can be calculated. The true contact point is identified 

as the one whose inward normal yields a positive dot product with 𝑓, consistent with the compressive 

nature of the applied force. 

3. Identification of Unintended Motions 

During grasping and in-hand manipulation, unintended movements such as sliding, separation, 

and rolling can occur, often leading to execution failures. Therefore, detecting these motions 

effectively is a crucial capability of a tactile sensing system[27],[28]. 

3.1 Sliding 

Sliding happens when the fingertip moves relative to the object while still in contact. As 

established in Section2, the contact normal 𝑛 can be determined. Additionally, the force vector 𝑓 is 

directly obtained from the force/torque sensor. The angle between 𝑛 and 𝑓 can thus be computed. 

Based on Coulomb’s friction law, if this angle exceeds the frictional threshold, sliding is taking 

place. 

To simulate sliding, we applied vertical pressure on a plastic board using the fingertip and 

introduced horizontal forces in two different ways: first, by applying a sudden force and second, by 

gradually increasing the force until sliding initiated. The preliminary results, illustrated in Fig.2, 

indicate that abrupt increases in the inclination angle should be closely monitored as they signify the 

onset of sliding. 
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Figure 2. Simulation of sliding 

 

3.2 Separation 

Since real-time force and torque data are continuously available from the sensor, detecting object 

separation is straightforward. A significant drop in measured force or torque signals that the object is 

losing contact with the fingertips. 

3.3 Rolling 

If neither sliding nor separation is detected, but the contact point shifts across the fingertip 

surface, rolling is occurring. Unlike sliding, rolling maintains an inclination angle smaller than the 

frictional threshold, with only the contact location changing. 

By accurately detecting these undesired motions, corrective actions such as motion adjustments, 

grip reinforcement, or regrasping strategies can be implemented to enhance grasp stability. 

4. Feature Extraction for Texture Sensing 

This section examines the potential of force/torque data in detecting surface textures. As 

classifiers based on reliable features are straightforward to implement, our main goal is to develop 

meaningful and robust feature representations. 

From a microscopic perspective, texture arises from the surface’s unevenness, where peaks and 

valleys create different stimuli upon contact. To characterize texture more effectively, we analyze two 

key aspects: pattern and roughness. If the surface irregularities are pronounced, the focus is on pattern 

recognition. Conversely, when the surface irregularities are subtle, roughness becomes the primary 

distinguishing factor. By leveraging both aspects, we can develop a more comprehensive texture 

classification system. 

4.1 Pattern Recognition 

In human skin, Meissner’s corpuscles detect changes in surface contact, making frequency 

domain analysis a natural approach for pattern recognition [23]. 
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Figure 3.Experiment setup for texture sensing 

 

As illustrated in Fig.3, the fingertip is pressed vertically onto the test material with a constant 

force of approximately 1N (equivalent to the gravitational force of the finger). A servo motor with a 

spool then pulls the material using a string at a steady velocity of 0.035m/s. The sampling rate is set 

to 200Hz. This setup enables us to collect force signals in the time domain, as shown in Fig.4 for a 

corrugated cardboard sample (Fig.5(a)). To simplify analysis, the string is aligned with the sensor’s 

x-axis, ensuring that the measured tangential force corresponds to the x-component. This approach 

can be generalized using the known contact normal direction (Section2). 

 
Figure 4. A time-domain example of Corrugated Cardboard 1 
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Figure 5. Materials. (a) Corrugated Cardboard 1 (b) Corrugated Cardboard 2 (c) Towel (d) Paper 

Towel (e) Painter's Tape (f) Copy Paper 

 

Next, we apply the Fast Fourier Transform (FFT) to the force signals recorded during sliding 

(marked by the red square). Since sliding detection is already established (Section3), this 

transformation allows us to analyze the frequency characteristics of different textures. 

For our experiments, we selected a variety of common materials, including two types of 

corrugated cardboard, a towel, paper towel, painter’s tape, and copy paper, as shown in Fig. 5. 

 

 

Figure 6.Frequency responses of different materials 

 

The frequency analysis results, shown in Fig.6, focus on components below 10Hz due to the 

relatively slow pulling speed. As observed in prior studies[23], finer textures tend to generate higher-

frequency signals than coarser surfaces. This trend is evident in our results, where the dominant 

frequency for corrugated cardboard1 (7.42Hz) is higher than that of corrugated cardboard2 (3.52Hz), 
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corresponding to their respective corrugation intervals of 5mm and 10mm. 

The frequency peaks reflect the periodicity of the surface pattern, while their amplitudes indicate 

the prominence of the texture. To capture meaningful texture features, we select the most significant 

peaks, prioritizing those with higher amplitudes. Given that some materials exhibit non-uniform 

patterns and potential sensor noise, selecting multiple peaks is reasonable. As shown in Table1, we 

extract the three most prominent frequency peaks for pattern-based texture classification. 

 

Table 1. Frequency Features for Texture Sensing 

M. 
Peak 1 

(freq)(mag) 

Peak 2 

(freq)(mag) 

Peak 3 

(freq)(mag) 

(a) 0.8 6.5 3.9 3.7 7.4 23.5 

(b) 0.8 8.3 3.5 58.6 6.6 18.2 

(c) 0.8 7.1 1.6 10.9 2.7 8.3 

(d) 0.8 4.5 2.0 3.5 3.5 5.0 

(e) 0.4 3.4 2.7 4.5 4.7 4.4 

(f) 0.8 1.6 4.3 1.9 5.1 1.7 

Note: (a)--(f) are corresponding materials in Fig. 5.Units for frequency and magnitude are Hz and 
310− , respectively. 

4.2 Roughness Estimation 

For surfaces with finer-scale irregularities (less than 1mm) or small protrusions, frequency 

analysis alone is insufficient, as the induced force variations may be too subtle relative to noise. In 

these cases, roughness is a more suitable characteristic for differentiation. 

To quantify roughness, both amplitude and frequency components must be considered. While 

frequency-based features are extracted as described in Section4.1, amplitude-based features provide 

additional insight into surface roughness. Instead of relying on direct force amplitude—which varies 

with applied pressure—we utilize the inclination angle as a roughness indicator. 

In Section 3, we introduced sliding detection based on inclination angle estimation. According 

to Coulomb’s friction model, during continuous sliding, the inclination angle remains stable and 

corresponds to the friction angle. The sliding friction coefficient, represented by tan(friction angle), 

serves as a key roughness metric. A rougher surface typically results in a larger sliding friction angle. 

To extract meaningful features, we compute the maximum, minimum, and average inclination 

angles during sliding, as summarized in Table2. These values provide a robust measure of surface 

roughness, helping to distinguish between different materials. 

 

Table 2 . Amplitude Features for Texture Sensing 

Material Inclination angle during sliding 

Maximum Minimum Average 

(a) 11.78 7.12 8.88 
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(b) 30.21 4.98 17.20 

(c) 14.43 10.29 12.93 

(d) 12.69 10.53 11.64 

(e) 10.21 7.68 8.79 

(f) 8.40 6.04 6.86 

Note: (a)--(f) are corresponding materials in Fig. 5. Unit is degree. 

4.3 Feature Analysis and Classification 

This section presented texture sensing features that incorporate both frequency and amplitude-

based metrics. Materials with well-defined patterns, such as corrugated cardboard1 and corrugated 

cardboard2, exhibit distinct frequency signatures. In contrast, smooth surfaces like copy paper lack 

prominent frequency components but demonstrate lower roughness values. Materials such as towels, 

paper towels, and painter’s tape fall between these extremes.  

By integrating both feature sets, we can develop an effective classification model. Assigning 

appropriate weights—such as emphasizing high-amplitude frequency peaks—further enhances the 

accuracy of surface texture recognition. 

5. Center of Gravity (CoG) 

By considering the tactile inputs from all fingertips of the robot hand along with the 

measurements discussed earlier, we seek to extract further information, such as the object's Center of 

Gravity (CoG). CoG is a crucial parameter for hand motion control, as it directly affects object 

balance and grasp stability[29],[30]. 

5.1 Center of Gravity (CoG) Estimation 

 

 

Figure 7. Experimental setup. (a) A three-fingered hand outfitted with the proposed tactile fingertip 

sensors. (b) A mathematical model representing the experimental configuration. 
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Equipped with encoders that accurately measure joint angles, the robot hand provides the exact 

angle of each finger joint. Using forward kinematics, we calculate the position and rotation of each 

fingertip relative to the hand frame attached to the palm (see Fig. 7). Using this information, all forces 

and moments acting on the fingertips are transformed into a force 𝐹 and a moment 𝑀 in the hand 

frame. When the object is securely grasped and in static equilibrium, 𝐹  represents the object's 

gravitational force, while 𝑀 denotes the gravitational moment, expressed as 

𝑀 = 𝑡̂𝐹 = −𝐹̂𝑡 ········································· [Formular 3] 

where 𝑡  denotes the CoG position relative to the hand frame. The object's mass can be 

computed as ||𝐹||/𝑔, where 𝑔 represents gravitational acceleration. Solving Eq.3 for 𝑡yields 

𝑡 = −𝐹̂+𝑀+ 𝑐𝑔 = 𝑞 + 𝑐𝑔 ··························· [Formular 4] 

where 𝑔 defines the basis of the null space of 𝐹, representing the gravitational direction in the 

hand frame. 

Analogous to Eq.2, Eq.4 defines a straight line in the hand frame parallel to 𝑔. For instance, in 

the configuration shown in Fig.7(a), a downward-directed line (denoted as line1) is obtained, as 

illustrated in Fig.7(b). To refine the CoG estimation, we rotate the robot hand and the grasped object 

together while keeping the joint angles and contact positions constant. These parameters are 

monitored using the joint encoders and the sensing method described earlier. This rotation alters the 

gravitational direction 𝑔 within the hand frame, yielding a new straight line, line~2, as illustrated in 

Fig.7(b). The intersection of these lines provides the estimated CoG position. 

In practice, sensor inaccuracies may cause the computed lines in 3D space to not intersect 

precisely, resulting in skewed lines. To mitigate this, we collect multiple lines by rotating the robot 

hand into different orientations while keeping the object firmly grasped. The CoG is then determined 

as the point that minimizes the sum of squared distances to all these lines. 

The squared perpendicular distance from a point to a line is given by 

𝑑(𝐭; 𝑞, 𝐠) =∥ (𝑞 − 𝑡) − ((𝑞 − 𝑡)𝑇𝑔)𝑔 ∥2

=∥ (𝐼 − 𝑔𝑔𝑇)(𝑞 − 𝑡) ∥2

= (𝑞 − 𝑡)𝑇(𝐼 − 𝑔𝑔𝑇)(𝑞 − 𝑡)

 ········ [Formular 5] 

With 𝑁 collected lines, the total squared distance is 

𝐷(𝑡; 𝑞, 𝑔) = ∑ (𝑞𝑖 − 𝑡)𝑇𝑁
𝑖=1 (𝐼 − 𝑔𝑖𝑔𝑖

𝑇)(𝑞𝑖 − 𝑡) ··· [Formular 6] 

where 𝑞𝑖 and 𝑔𝑖 correspond to values from Eq.4 for the i-th line. 

To minimize this total squared distance, we take the derivative with respect to 𝑡: 

∂𝐷

∂𝑡
= ∑ −𝑁

𝑖=1 2(𝐼 − 𝑔𝑖𝑔𝑖
𝑇)(𝑞𝑖 − 𝑙) = 0 ·············· [Formular 7] 

Rearranging Eq.7, we derive 

𝐴𝑡 = 𝑏 ···················································· [Formular 8] 

Where A = ∑ (I − gigi
T)N

i=1  and b = ∑ (I − gigi
T)N

i=1 qi. 

Since 𝑔 defines the null-space basis of free, we can select 𝑔 as fres, simplifying 𝑏 to ∑ 𝑞𝑖
𝑁
𝑖=1 . 

Consequently, the estimated CoG position 𝑡̂ is given by 
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𝑡̂ = 𝐴+𝑏 ·················································· [Formular 9] 

5.2 Accuracy Test 

In this section, we evaluate the precision of our CoG estimation method. As illustrated in Fig.7(a), 

our experimental hand comprises four fingers, each outfitted with a sensor prototype. Once the object 

is securely grasped, we begin by estimating the four contact positions and corresponding normals 

using the algorithm described in Section2. Concurrently, the approach detailed in Section5 is 

employed to compute a single set of data for CoG estimation. To acquire additional data, we alter the 

hand's pose while keeping the contact points unchanged. Since our hand lacks a wrist, we manually 

reorient the base board. Although at least two data sets are necessary to resolve the intersection for 

CoG estimation, we collect 10 sets in our experiments to enhance robustness, thereby compiling the 

full tactile dataset. 

 

 

Figure 8. Accuracy test of different poses. (a) mid (b) bottom right (c) top right (d) top left (e) 

bottom left 

 

 
Figure 9. Testing tool. 

 

For the accuracy test, a billiard ball was chosen as the test object due to its ideal spherical shape 

and uniform mass distribution. Measurements were acquired from five distinct top-view poses—

namely, mid, bottom right, top right, top left, and bottom left—as shown in Fig.8. To establish the 

ground truth for the CoG, we employed a measurement tool consisting of an L-square, blocks, and 

brackets (see Fig.9). Given the known dimensions of the base board (300mm*300mm) and the billiard 

ball (d=57mm), the tool was moved along two perpendicular directions (as indicated by the red arrows 

in Fig.8), enabling CoG measurement with a precision of up to 0.5mm. Table3 compares the estimated 
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CoG values with the ground truth, showing that the typical error is below 5mm. 

5.3 Experiment 

CoG is a crucial parameter estimated through tactile feedback, offering insights beyond visual 

observation. In this experiment, we use our method to assess whether a nontransparent cup contains 

water and detect liquid motion. 

Typically, when one wants to verify if a cup contains water, the common approach is to shake it. 

To emulate this, our experiment involves stirring the contents with a stick instead of shaking the cup. 

After removing the stick, we proceed with CoG estimation. 

For an empty cup (i.e., a solid object), the CoG remains unchanged after agitation. As shown in 

Fig.10, the computed lines converge closely, indicating that the CoG is consistent. 

However, if water is present, the CoG will vary as the liquid moves. At any given moment, only 

a single line can be determined to pass through the CoG, which implies that while we can detect a 

general shift in the CoG, pinpointing its exact position is approximate. Fig.11 illustrates two scenarios: 

one where the water is stirred laterally and another where it is stirred circumferentially. In both cases, 

the traced lines reflect the water's motion, corresponding to the dynamic change in CoG. Notably, 

these lines typically intersect at a single point due to centrifugal force. Water movement, modeled as 

a pendulum, generates a force detected by the outer fingers that converges at this point. 

 

 

Figure 10. CoG Estimation of a Solid Object. (a) Top view. (b) Side view. 
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Figure 11. CoG Deviation Results. (a)--(d) Lateral Stirring. (e)--(h) Circumferential Stirring. (b)(f) 

Top view. (c)(g) Side view. (d)(h) Front view. 

 

6. Object Classification and Reconstruction 

Humans possess the remarkable ability to classify objects solely through local tactile feedback 

gathered during grasping and manipulation, without relying on vision. Inspired by this capability, we 

propose a method for object classification and reconstruction using a robotic hand equipped with 

tactile sensing. 

Assuming the robotic hand grasps an object with 𝑚 fingertips, our proposed techniques allow 

us to accurately determine the positions and surface normals at each of the 𝑚 contact points. Using 

this geometric information, the robotic hand is capable of classifying basic object shapes, such as 

spheres, cylinders, and cuboids. 

In this study, we focus on classification based on a single grasp. However, in future work, we 

aim to classify objects with more complex geometries by leveraging multiple grasps or employing 

in-hand manipulation techniques. Once classification is achieved, we further introduce strategies to 

reconstruct the object’s shape based on the acquired contact information. 

6.1 Classification 
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Figure 12. Theoretical illustrations. Yellow dots represent contact positions, pink vectors indicate 

contact normals, and the black diamond dot marks the intersection of contact normals. (a) A typical 

sphere. (b) A typical cylinder. (c) A typical cuboid. (d) Ambiguous case among a sphere, cylinder, 

and cuboid. (e) Ambiguous case between a cylinder and cuboid. 

 

Table 3. CoG Estimation VS Ground Truth 

Tests Estimation(mm) round Truth(mm) 

x̂ ŷ ẑ x y z 

(a) -4.4 -3.6 175 -2.1 -1.4 176 

(b) 40.6 -2.7 136 42.1 0.4 136 

(c) -5.4 42.0 134 -0.7 41.0 136 

(d) -37.6 -1.6 138 -38.2 0.7 136 

(e) -0.8 -42.4 143 -0.7 -39.6 141 

Note: (a)--(e) are corresponding locations in Fig. 8. 

 

Distinct tactile patterns emerge for the three object types under consideration. For example, a 

sphere exhibits the characteristic that all contact normals converge at a single point (see Fig.12(a)), 

and the distances from this intersection point (i.e., the sphere's center) to each contact point are 

uniform, corresponding to the sphere’s radius. 

In the case of a cylinder, as illustrated in Fig.12(b), when grasping its curved surface, the contact 

normals are arranged perpendicular to the cylinder's central axis. These normals can be projected onto 

a common plane, where they intersect at a single point, reflecting the inherent geometry of the cylinder. 

For a cuboid, the observed pattern is that the contact normals tend to be either orthogonal or 

directly opposite to one another (refer to Fig.12(c)).  

Nevertheless, there are occasional ambiguous scenarios (Figs.12(d) and 12(e)) where 

classification based solely on one grasp may be unclear. In such cases, a simple regrasp or additional 

manipulation can resolve the ambiguity—an approach we plan to explore in future work. 

To handle these ambiguous cases and to extend the classification to objects with irregular shapes, 

we propose a neural network-based approach that also accounts for hardware-induced errors. 

For this purpose, we employ a two-layer feed-forward neural network. The hidden layer uses 

sigmoid activation functions, while the output layer employs softmax units, ensuring robust 
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classification of the input vectors. Trained with scaled conjugate gradient backpropagation, the 

network accepts 4 contact positions and 4 contact normals as input, yielding eight 3-Dimensional 

vectors (24 features in total). For our proof of concept, we configured the hidden layer with 50 

neurons; further fine-tuning of the network architecture remains a future consideration. 

The training dataset was partitioned into 70% for training, 20% for validation, and 10% for 

testing. As shown in Fig.15, we utilized six objects (two per object type) for training-collecting 15 

samples for each object, amounting to 90 training samples-and three additional objects for testing, 

with 10 samples each (totaling 30 test samples). The results, depicted in Fig.13, demonstrate a 

classification accuracy approaching 100%. 

Out of these, 3 samples were misclassified. Notably, their classification output probabilities for 

the assigned class were only slightly above 50%, indicating that these samples are near the decision 

boundary. To further illustrate this point, we have plotted these 3 configurations in Fig.14, which 

confirms our observation. This finding suggests that if the classification confidence falls below a 

certain threshold, the result should be considered unreliable. For instance, when applying a threshold 

of 90% confidence, an additional 4 samples are identified as being in ambiguous regions and would 

benefit from a regrasp or further manipulation to clarify the classification. Combining a 90% 

confidence criterion with a supplementary regrasp operation would yield a very high overall 

classification accuracy. 

 

 

Figure 13. Confusion matrices. Classes 1, 2, and 3 represent sphere, cylinder, and cuboid, 

respectively. (a) Training confusion matrix. (b) Validation confusion matrix. (c) Testing confusion 

matrix. (d) Additional testing confusion matrix. 
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Figure 14. Misclassifications. (a) Sphere misclassified as cylinder. (b)(c) Cuboid misclassified as 

cylinder. 

 

 

Figure 15. Objects (Unit: mm). 

 

6.2 Reconstruction 

Once the object has been classified, its geometric shape can be reconstructed using tactile 

feedback, including contact positions, contact normals, and the estimated CoG. We demonstrate our 

reconstruction strategy using three instances with classification confidences very close to 100%. 

6.2.1 Sphere 

For a sphere, we first estimate the radius by averaging the distances between the contact 

positions and the intersection point of the corresponding contact normals. This estimated radius, 

together with the intersection point, is then used to reconstruct the sphere as shown in Fig.16(d). The 

computed radius of 44.5mm closely matches the ground truth of 45mm. 
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Figure 16. Results of Reconstruction. (a) Example of sphere. (b) Example of cylinder. (c) Example 

of cuboid.(d)(e)(f) Simulation Results. The yellow dots indicate contact positions, the pink vectors 

represent contact normals, the red dot marks the estimated CoG, and the black diamond dot denotes 

the intersection of contact normals. 

 

6.2.2 Cylinder 

In the case of a cylinder, the robot hand grasps the object on its curved surface, which allows us 

to reconstruct only the cylindrical portion (see Fig.16(e)). The procedure begins by determining the 

vector that is most perpendicular to the set of contact normals. This vector defines a common plane 

onto which the contact normals are projected. Within this plane, the projected normals converge at a 

single point. The average distance from this intersection point to the projected contact positions is 

then computed to estimate the radius. Using this radius along with the intersection point, the 

cylindrical surface is reconstructed, yielding an estimated radius of 25mm (with the ground truth 

being 30mm). 

6.2.3 Cuboid 

For a cuboid, as depicted in Fig.16(f), the reconstruction process is slightly more complex. In 

this scenario, two of the contact normals are parallel, indicating they represent the same face 

dimension. The remaining two normals, together with these, are oriented orthogonally, thereby 

capturing the three distinct dimensions of the cuboid. Assuming the object is homogeneous, its CoG 
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coincides with its geometric center. With the estimated CoG and the local contact positions and 

normals, the contact surfaces can be reconstructed. By computing the distances from the CoG to these 

surfaces, the dimensions of the cuboid are determined. In our experiment, the estimated dimensions 

were 50mm*73mm*88mm compared to the ground truth dimensions of 60mm*80mm*90mm. 

7. Summary and Future Work 

In this work, we presented a novel tactile fingertip sensor capable of concurrently measuring 

contact positions and normals, as well as detecting unintended motions such as sliding, separation, 

and rolling. We also introduced frequency and amplitude-based features for texture sensing and 

proposed a multi-finger approach to estimate the object's center of gravity (CoG), including an 

analysis of error propagation. An artificial neural network was utilized to classify objects—spheres, 

cylinders, and cuboids—and we demonstrated three reconstruction examples with a four-fingered 

robotic hand. The preliminary results are promising, demonstrating the effectiveness of the proposed 

system in enhancing robotic tactile perception. 

The primary focus of this research is to integrate multi-dimensional tactile feedback for 

improved object interaction and identification. By combining force/torque data with detailed tactile 

sensing, our work advances the capability of robotic hands to perform sophisticated tasks such as 

object reconstruction and precise manipulation. 

Looking forward, several future directions have been identified. First, we plan to explore in-

hand manipulation strategies to facilitate regrasping, addressing situations where a single grasp may 

be insufficient due to ambiguity. Second, we aim to enhance our algorithms to better address 

undesired motions and surface classification, as well as implement active touch motions for improved 

texture sensing. Third, by leveraging in-hand manipulation, we anticipate collecting richer local 

tactile data, which would be beneficial for identifying more complex objects. Additionally, we are 

investigating hardware improvements, such as incorporating a wrist joint to reduce the need for 

human intervention and improve the system's overall performance. Ultimately, our goal is to develop 

a tactile sensing system that can match human proficiency, significantly advancing the field of robotic 

perception. 
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