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ABSTRACT 

This study addresses the critical challenges in rehabilitation robotics, specifically in 

environmental adaptability, precision in action recognition, and personalized patient care. We 

introduce the EfficientDet-OpenPose-DRL network, a novel integration of EfficientDet for accurate 

human and object detection, OpenPose for precise motion tracking, and Deep Reinforcement 

Learning (DRL) for optimizing rehabilitation strategies. The main contribution of this article lies in 

the development of this integrated model, which not only enhances environmental perception and 

action recognition but also improves adaptive decision-making in real-time rehabilitation scenarios. 

This model enables personalized, adaptable rehabilitation by leveraging advanced computer vision 

and deep learning techniques. Experimental results demonstrate significant improvements over 

existing methods, offering enhanced precision, safety, and patient-specific rehabilitation outcomes. 

This work contributes to the advancement of human-centric rehabilitation technologies, paving the 

way for more effective and interactive healthcare solutions. 
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1. Introduction 

Rehabilitation robots represent a significant breakthrough in medical technology, offering an 
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innovative approach to rehabilitation therapy[1]. These robots provide patients with an efficient and 

interactive rehabilitation experience by simulating, assisting[2], or enhancing human movement. 

Despite the advances in rehabilitation robotics, existing research reveals several critical gaps, 

particularly in the areas of environmental adaptability, precision in action recognition, and the ability 

to provide personalized, adaptive care[3,4]. Current systems often struggle to accurately interpret 

complex human movements and adapt to the dynamic needs of individual patients in real-time[5], 

limiting their effectiveness in diverse rehabilitation scenarios. 

With the rapid development of computer vision technology, the level of intelligence in 

rehabilitation robots has significantly improved. Computer vision technology enables robots to 

capture and understand their surroundings through cameras, allowing them to process and interpret 

complex visual information[6,7]. The essence of this technology is to endow robots with a profound 

understanding of human movement, thereby ensuring patient safety, accurately assessing treatment 

progress, and dynamically adjusting treatment plans based on real-time data. For instance, robots can 

analyze patients' body movements and postures, identify incorrect movement patterns[8], and 

promptly adjust to prevent potential harm, ensuring the safety and effectiveness of the rehabilitation 

process[9]. 

Computer vision technology plays an indispensable role in advancing the research and 

development of rehabilitation robots[10,11]. It significantly enhances the robots' ability to recognize 

and mimic human movement patterns. Through advanced image processing and analysis techniques, 

robots can precisely capture and interpret each movement of the user, ensuring the accuracy and 

effectiveness of rehabilitation movements[12]. Computer vision technology not only improves the 

performance of robots but also, through continuous learning and adaptation, enhances their capability 

to handle complex and unknown rehabilitation scenarios[13,14]. As this technology continues to 

progress and innovate, we anticipate witnessing more breakthroughs in rehabilitation robots, bringing 

more personalized, interactive, and efficient rehabilitation experiences to patients. 

However, the application of computer vision technology in rehabilitation robots is not without 

challenges. The complexity of the environment, such as changing lighting conditions, occlusions, and 

background interference, poses significant threats to the accuracy and reliability of the vision 

system[15]. Furthermore, the system must exhibit a high degree of flexibility and adaptability to cater 

to the personalized rehabilitation needs of different patients[16]. Robots need to process a large 

amount of visual data in real-time and make rapid decisions, placing strict demands on the real-time 

performance of algorithms and computational resources[17,18]. The complexity of human-robot 

interaction also presents challenges in designing and implementing robot functionalities. Robots need 

to accurately interpret human intentions and movements while ensuring safety throughout the 

rehabilitation process[19]. This requires the computer vision system to be highly precise and robust, as 

well as to closely collaborate with other control systems of the robot to ensure coordinated responses, 

especially in emergency situations to prevent harm. 

In light of the shortcomings in previous work, we propose the EfficientDet-OpenPose-DRL 

network model. Our focus is on enhancing environmental perception, improving precision in action 
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recognition, and optimizing adaptive decision-making processes, thereby advancing the capabilities 

of rehabilitation robotics. This model integrates three advanced technologies, aiming to improve the 

environmental perception, action understanding precision, and adaptive decision-making capabilities 

of rehabilitation robots. Firstly, the EfficientDet model plays a crucial role in this framework by 

analyzing images deeply through its efficient network structure, identifying and locating the human 

body and other key objects in images. This step is vital for ensuring that robots can accurately 

recognize the patient's position and posture under various environmental conditions, thus providing 

a solid foundation for subsequent action analysis and adaptive decision-making. 

Next, the OpenPose model is introduced to provide a detailed analysis of the patient's posture 

and movements. By precisely detecting and tracking human keypoints, OpenPose offers detailed 

information about the patient's movements. This information is crucial for robots as it enables them 

to perform accurate movement mimicry or provide necessary movement assistance, ensuring the 

effectiveness and safety of the rehabilitation process. The DRL model optimizes decision-making and 

behavior. DRL utilizes the environmental and posture information obtained from EfficientDet and 

OpenPose, adopting reinforcement learning algorithms to optimize the robot's movement strategies. 

Its introduction endows robots with the ability to autonomously learn and adjust their behavior, 

allowing them to provide more personalized and adaptive rehabilitation training[20]. 

By integrating the advantages of these three technologies, the EfficientDet-OpenPose-DRL 

network model not only improves the comprehensiveness of environmental perception and the 

accuracy of action understanding but also enhances the robot's adaptive decision-making capabilities. 

This integration allows our model to provide precise and personalized rehabilitation assistance while 

maintaining high efficiency. The introduction of DRL, in particular, enables robots to dynamically 

learn and adjust based on feedback, achieving continuous optimization. This optimization is reflected 

not only in improving therapeutic effects but also in enhancing patient safety and comfort in the 

rehabilitation experience. Therefore, our proposed network model offers an effective solution to the 

challenges faced by traditional rehabilitation robots in environmental perception, action 

understanding, and adaptive decision-making, promising to bring more efficient, precise, and 

personalized rehabilitation experiences to patients. 

In our study, our main contributions are reflected in the following three areas: 

 We have successfully integrated three advanced technologies, EfficientDet, OpenPose, and 

DRL, to construct an innovative control model for motor rehabilitation robots. This 

integrated model demonstrates significant advantages in improving environment perception, 

movement understanding, and adaptive decision making. 

 Our model significantly improves the rehabilitation robot's ability to understand human 

movements through accurate motion capture and analysis. This increased accuracy not only 

makes the rehabilitation process more efficient and effective, but also provides a safer and 

more comfortable rehabilitation experience for the patient. 

 The deep reinforcement learning component we introduced enables the robot to 

autonomously learn and adjust its behavior based on real-time feedback. This point not only 
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enhances the robot's adaptability and personalized treatment capability, but also enables our 

model to effectively cope with various complex and unknown rehabilitation scenarios, 

providing new perspectives and methods for future research and application of 

rehabilitation robots. 

The subsequent sections of this paper are meticulously structured to build upon the foundational 

concepts introduced here. Section 2 will delve into a critical examination of existing studies, 

highlighting the pivotal advancements and identifying the prevalent gaps within the current body of 

research. This will set the stage for Section 3, where we will articulate the detailed methodologies 

and robust frameworks employed in our study, offering clarity and depth to our research approach. 

Following this, the Section 4 will provide empirical evidence to substantiate our claims, showcasing 

the efficacy of our methods through methodical testing and nuanced analysis. Concluding the paper, 

Section 5 will synthesize the insights garnered from our research, ponder the broader implications of 

our findings, and propose potential trajectories for future inquiry. Through this structured narrative, 

we aim to present a coherent and comprehensive discourse, contributing meaningful insights to the 

field of rehabilitation robotics and beyond. 

2. Related Work 

2.1 Deep Learning for Human Pose Estimation 

The application of deep learning in human pose estimation primarily focuses on using 

Convolutional Neural Networks (CNNs) to analyze human postures in videos or images[21]. 

Frameworks like OpenPose, for instance, enable real-time capture and analysis of user movements[22], 

identifying key points such as the positions of arms, legs, and head[23]. This is vital for rehabilitation 

robots to understand the capabilities and limitations of users[24], as well as their progress during 

rehabilitation. A key advantage of this technology is its real-time processing capability, providing 

immediate analysis and response to a user’s posture and movements during rehabilitation exercises[25]. 

Despite its effectiveness in real-time posture analysis, this approach faces several challenges. 

Deep learning models typically require extensive labeled data for training, which may be difficult to 

acquire in specific rehabilitation scenarios[26]. Additionally, the accuracy of these methods may 

decrease in complex backgrounds or when parts of the user's body are obscured. Furthermore, real-

time processing of high-resolution video streams demands significant computational resources[27], 

potentially limiting its application in resource-constrained environments such as remote rehabilitation 

settings or mobile devices[28]. 

2.2 Machine Vision-Based Motion Anomaly Detection 

Machine vision-based motion anomaly detection systems utilize machine learning algorithms[29], 

such as Support Vector Machines (SVM) and Decision Trees, to analyze motion data captured by 

cameras[30]. These systems aim to identify incorrect movement patterns during physical therapy for 

rehabilitation patients[31]. For instance, if a patient executes a particular movement with incorrect 

posture or insufficient range, the system can detect these issues and provide feedback[32]. This not 

only helps in avoiding potential injuries but also ensures the efficiency and effectiveness of 
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rehabilitation training[33,34]. 

While such systems are valuable for motion monitoring and feedback, they also have 

limitations[35]. A major concern is that the accuracy and effectiveness of the system heavily depend 

on the quality and diversity of the training data. If the dataset is inadequate or not comprehensive, the 

system may fail to recognize all types of motion anomalies[36]. Additionally, these generalized systems 

might struggle to accommodate individual differences, especially when dealing with patients with 

complex medical conditions.  

2.3 Multi-Modal Data Fusion in Rehabilitation Robot Control 

Research in multi-modal data fusion for rehabilitation robot control attempts to enhance the 

effectiveness of rehabilitation robots by integrating data from various sensors (e.g., visual data, 

pressure sensor data, and inertial measurement unit data)[37]. Deep neural networks play a role here, 

used for comprehensive analysis of these multi-source data, thereby achieving a more accurate 

understanding of patient movements[38]. This technology enables rehabilitation robots to adapt 

flexibly to the specific needs of each patient, such as adjusting support strength or range of motion, 

to meet individual rehabilitation goals and constraints[39]. 

Although multi-modal data fusion offers a more comprehensive perspective, it also introduces 

new challenges[40]. Firstly, processing and analyzing data from various sources require complex 

algorithms and potentially higher computational resources. This may result in a decline in real-time 

responsiveness, especially in resource-limited environments[41]. Secondly, temporal synchronization 

and fusion of data from different sensors can increase technical complexity[42]. Moreover, an 

overreliance on technology might overlook the importance of patient personal experience and 

intuitive feedback, which are crucial for effective rehabilitation[43]. 

2.4 Augmented Reality-Based Interactive Rehabilitation Training 

The emerging field of interactive rehabilitation training combining Augmented Reality (AR) 

with computer vision is an innovative approach[44]. In this method, patients engage in physical 

rehabilitation exercises by interacting with virtual objects in an augmented reality environment[45]. 

This technology uses sophisticated image recognition and spatial mapping techniques to ensure 

effective integration of virtual objects with the real-world environment[46]. For instance, patients 

might be asked to complete specific hand movements or walking tasks in a virtual setting, with the 

system providing real-time feedback based on their performance[47]. This not only enhances the 

engagement and motivation of rehabilitation exercises but also offers challenging tasks to facilitate 

their rehabilitation process[48]. 

Although the application of augmented reality technology in rehabilitation training holds 

significant potential, it also faces some constraints. Firstly, the implementation of this technology 

might require expensive hardware and software resources[49], adding to the cost. Secondly, for certain 

patient groups, such as the elderly or those with certain neurological disorders, augmented reality 

environments might cause discomfort or cognitive confusion[50]. Moreover, to effectively use 

augmented reality for rehabilitation training, highly customized program designs are required to 
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accommodate various physical limitations and rehabilitation goals[51]. 

3. Materials and Methods 

3.1 Overview of Our Network 

Our model, the EfficientDet-OpenPose-DRL network, is an intricate system designed to 

revolutionize the control mechanisms of user-based motion rehabilitation robots through the 

application of advanced computer vision technology. The model is composed of several critical 

components that work in concert to interpret, assist, and enhance human movement for rehabilitative 

purposes. The overall model structure is shown in Fig 1. This graphical representation reflects the 

complex yet efficient working mechanism of the model. 

 

Figure 1. Overall structure diagram of the model. 

At the onset, we utilize EfficientDet for its object detection capabilities. It serves as the 

foundation of our model's environmental understanding, distinguishing between the user and other 

significant objects within the rehabilitation space. This detection is vital for ensuring that the robot 

can operate within a dynamic environment and respond to changes or obstacles that may arise during 

rehabilitation exercises. 

Following object detection, the Bi-directional Feature Pyramid Network (BiFPN) is applied for 

nuanced feature extraction. This step is key in the process as it enriches the model's perception, 

allowing for the detection of complex movements and the understanding of intricate physical 

environments, which is essential for precise movement assistance. 
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The OpenPose model plays a pivotal role in our system by providing real-time multi-person pose 

estimation. It receives images from the preceding stages and processes them to identify key points on 

the user's body. The detailed skeletal structure that OpenPose constructs informs the robot of the 

specific postures and movements the user is making, enabling accurate replication or support of 

movements. 

Central to our model is the implementation of DRL, which allows the robot to make informed 

decisions and adapt its actions to the user's needs. The DRL stage utilizes a policy network to predict 

the best course of action and a value network to estimate the potential outcome of these actions. By 

continuously learning from the environment and the user's state, the model refines its strategy to 

optimize the rehabilitation process. 

The construction of our network starts with the preprocessing of image data collected from 

cameras, which involves standardizing image formats through normalization and resizing to align 

with model input requirements. Subsequent to preprocessing, the image data is channeled into the 

EfficientDet model for object detection. Here, EfficientDet discerns the human body and other vital 

objects, furnishing precise location and pose data. This data is then passed on to the OpenPose model, 

which conducts a meticulous human pose estimation by pinpointing key human joints and body parts. 

The combined outputs from EfficientDet and OpenPose furnish the DRL model with detailed insights 

into the current environmental context and the patient’s physical state. The DRL model then employs 

a reinforcement learning algorithm to appraise this information and refine the robot’s motion 

strategies accordingly, ensuring that the actions taken are both appropriate and conducive to the user’s 

rehabilitation journey. 

The proposal of our integrated EfficientDet-OpenPose-DRL model marks a transformative step 

in the realm of motion rehabilitation, merging the precision of computer vision technology with the 

adaptability of intelligent learning systems. This synergy significantly enhances the robot's capability 

for personalized and responsive rehabilitation assistance. Unlike traditional robotic systems that may 

only perform pre-programmed tasks, our model offers a sophisticated analysis of user movement and 

an adaptive learning approach, enabling the rehabilitation robot to evolve its strategies in real time. 

The model's deep reinforcement learning component is particularly crucial, allowing for dynamic 

adjustments based on continuous feedback, which leads to ongoing refinement of the therapy. This 

ongoing optimization process not only augments the therapeutic effects but also prioritizes patient 

safety and comfort. By addressing the inherent challenges in environmental perception, movement 

interpretation, and decision-making flexibility, our model stands to revolutionize the field of 

rehabilitation robotics. It promises more effective, precise, and individualized treatment plans, 

ultimately improving the quality of life for patients undergoing rehabilitation and representing a 

significant leap forward in rehabilitative care. 

3.2 EfficientDet 

EfficientDet, proposed by the Google Research team in 2020[52], represents a formidable 

advancement in the realm of object detection, particularly addressing the intricate challenge of 

multiscale feature representation. Its novelty lies in the integration of EfficientNet as its backbone 
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network[53], augmented with an enhanced Bidirectional Feature Pyramid Network (BiFPN), and the 

utilization of compound scaling technology[54]. EfficientNet, a convolutional neural network, was 

developed through neural architecture search and compound scaling methods, aimed at achieving 

high accuracy with lower computational costs. 

Central to the prowess of EfficientDet are two core components: BiFPN for effective feature 

fusion and the EfficientDet detector for precise object detection[55]. BiFPN improves upon the 

traditional feature pyramid network structure by facilitating bidirectional information flow between 

feature layers of varying scales. This mechanism effectively integrates high-level semantic 

information with low-level details, thus enhancing the model's detection capabilities[56]. The essence 

of BiFPN lies in its approach to assigning customized weights to features during the integration of 

bottom-up and top-down multiscale features, rooted in three key insights: 

1. Nodes with a solitary input edge without feature fusion contribute marginally to the feature 

network, indicating the need for differential weighting of features based on their integration 

within the network. 

2. An additional edge directly connecting input and output nodes at identical levels facilitates 

the amalgamation of an extensive array of features at a minimal expense, augmenting the 

network's capacity to efficiently assimilate diverse feature information. 

3. Each bidirectional (top-down and bottom-up) pathway is treated as a distinct feature layer, 

applied repetitively several times to ensure profound high-level feature fusion, guaranteeing 

comprehensive integration of features across varied scales and contexts. 

Moreover, the compound scaling technique of EfficientDet judiciously adjusts the depth, width, 

and input resolution of the network, allowing the model to maintain robust performance across 

different scales and computational budgets. This characteristic not only makes EfficientDet stand out 

in terms of accuracy but also in computational efficiency. Compared to other state-of-the-art object 

detection models, EfficientDet achieves higher accuracy with equal or lower computational resources, 

making it suitable for resource-constrained environments, such as mobile devices and embedded 

systems.  

The allocation of weights to features within BiFPN is meticulously designed and can be 

operationalized through three distinct methodologies. The foremost approach, labeled "unbounded 

fusion," champions a dynamic and adaptable strategy for assigning weights to features, guaranteeing 

that each feature's unique properties and inherent information are appropriately recognized and 

utilized. This innovative method of weighting features sets the stage for a more sophisticated and 

efficacious amalgamation of features, the formula form is expressed as: 

 𝑂 = ∑  

𝑖

𝑤𝑖 ⋅ 𝐼𝑖 （1） 

where 𝑤𝑖 represents a learnable weight, it can manifest as a scalar, a vector, or a multidimensional 

tensor corresponding to each feature, channel, or pixel, respectively.  

This approach allows for a granular and nuanced adjustment of the feature contributions during 

the fusion process. However, a notable drawback of this technique lies in the scalar weight being 
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unbounded. This absence of bounds on the scalar weight can introduce challenges during the training 

phase, potentially leading to instability or convergence issues, thus necessitating careful management 

and adjustment within the training process. 

The second method employs a "Softmax fusion" technique, which operates as detailed below: 

 
𝑂 = ∑  

𝑖

𝑒𝑤𝑖

∑  𝑗 𝑒
𝑤𝑗

⋅ 𝐼𝑖 （2） 

While this approach effectively confines the weight to the range [0, 1] and ensures the 

preservation of feature contribution, it is important to note that it comes with a relatively higher 

latency cost. 

The third approach utilizes a "fast normalized fusion" process, delineated as follows: 

 𝑂 =∑  

𝑖

𝑤𝑖

∈ +∑  𝑗 𝑤𝑗
⋅ 𝐼𝑖 （3） 

where 𝑤𝑖 is guaranteed to be non-negative through the application of a ReLU function, and an 

epsilon value 𝜖 = 0.0001  is introduced to maintain numerical stability. This technique is 

particularly advantageous due to its capacity to provide bounded weights alongside a more rapid 

response. 

Delving into the structure of EfficientDet (as illustrated in Fig 2), it employs a one-stage 

detection framework. The model utilizes EfficientNet as its backbone, upon which the BiFPN is 

superimposed as a feature network. This network harvests features spanning from the third to the 

seventh level of the backbone. Subsequently, the combined output from the BiFPN is channeled into 

a network responsible for predicting classes and bounding boxes. 

 

Figure 2. The structure of EfficientDet. 

The scalability of EfficientDet renders it applicable across a wide range of applications, from 

small-scale devices to large servers. This ability to maintain efficient object detection performance 

on various devices positions it as an ideal choice for multiple computer vision tasks and practical 

applications. Through these innovations, EfficientDet has achieved significant breakthroughs in the 

field of object detection, particularly in enhancing detection accuracy and reducing computational 
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costs. This integration of EfficientDet into our model forms the foundation of our approach, enabling 

accurate environmental perception and laying the groundwork for further action analysis and adaptive 

decision-making. 

The EfficientDet model plays a pivotal role in our comprehensive model, being crucial for 

enhancing the environmental perception, target recognition, and adaptive decision-making 

capabilities of rehabilitation robots. As a key component of our model, EfficientDet significantly 

enhances the precision of environmental perception and target feature recognition through its 

advanced object detection functionality. EfficientDet integrates EfficientNet as its backbone network 

along with the innovative BiFPN, effectively accomplishing the fusion of multiscale features. This 

integration allows EfficientDet to combine information from different feature levels, providing a rich 

and detailed view of the environment and offering an accurate data foundation for rehabilitation 

robots. 

In our experiment, the role of EfficientDet is particularly critical. Its efficient object detection 

capability provides solid technical support for achieving our research goal—enhancing the 

adaptability and efficiency of rehabilitation robots. By precisely identifying and tracking patient 

movements, EfficientDet not only ensures the safety and effectiveness of the rehabilitation process 

but also provides real-time, accurate environmental feedback to the robots, enabling them to adapt to 

various complex rehabilitation scenarios. 

The scalability of EfficientDet further extends its applicability, making it suitable for a wide 

range of applications from small devices to large servers. This ability to maintain efficient object 

detection performance across different devices makes it an ideal choice for various computer vision 

tasks and practical applications. Through these innovations, EfficientDet has achieved significant 

breakthroughs in the field of object detection, especially in terms of improving detection accuracy 

and reducing computational costs. 

The integration of EfficientDet into our model forms the foundation of our approach, laying the 

groundwork for precise environmental perception for rehabilitation robots and providing solid 

support for subsequent action analysis and adaptive decision-making. This integration not only 

contributes powerful visual processing capabilities to our model at the technical level but also 

significantly enhances the practicality and intelligence of rehabilitation robots at the application level, 

proving essential for the success of our experiment. 

3.3 OpenPose 

OpenPose is a state-of-the-art system for real-time multi-person 2D pose detection developed by 

the Carnegie Mellon Perceptual Computing Lab[57]. It leverages CNNs like VGG19 for feature 

extraction, processing input images to extract detailed feature maps. The system then generates Part 

Confidence Maps (PCM) and Part Affinity Fields (PAF), which represent the confidence of locating 

body parts in certain pixels and encode the degree of association between different body parts, 

respectively[58]. OpenPose operates through a multi-stage CNN, where each stage refines the 

predictions of the previous one. This staged approach allows the network to progressively refine its 

predictions, starting from detecting prominent keypoints in the initial stages and gradually moving to 
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interpret the more complex relationships between keypoints in the later stages[59]. This iterative 

refinement is crucial for detecting keypoints that are challenging due to occlusion or subtle 

appearance. 

The real-time performance and accuracy of OpenPose have significant implications across 

various fields. In healthcare and rehabilitation, it offers a non-invasive way to monitor and analyze 

patients' postures and movements, facilitating correct exercise performance and enabling remote 

physiotherapy sessions[60]. In sports analytics, OpenPose assists in analyzing athletes' postures to 

enhance performance and prevent injuries. Furthermore, its ability to understand and interpret human 

body language opens new avenues for human-computer interaction[61], making interactions with 

machines more natural and intuitive. Overall, OpenPose represents a convergence of deep learning 

and visual geometry, offering a flexible and powerful tool for human pose estimation with broad 

applications across different industries and research areas[62]. 

As depicted in the provided Figure 3, OpenPose's network architecture begins with the VGG19 

backbone network, laying the groundwork for feature extraction from the input images. These 

features then proceed into a series of stage modules arranged in sequence, each sharing an identical 

configuration and purpose. Within each stage, the network splits into two branches: one dedicated to 

generating PCM and the other for producing PAF. Both PCM and PAF from each stage are subjected 

to loss calculations, and the total loss of the network is the cumulative sum of these individual stage 

losses. 

 

Figure 3. The structure of OpenPose. 

The inclusion of multiple stages is instrumental for enhancing the accuracy of keypoint detection. 

While the first stage provides a preliminary mapping of keypoints, subsequent stages refine and 

improve upon these initial detections. For instance, if the eyes are detected in the first stage, the 

subsequent stage may leverage that information to locate the nose more accurately. This staged 

process allows for an iterative refinement, utilizing the outputs of one stage to inform and improve 

the results of the next. 

This iterative process is crucial for keypoints that are subtle or affected by external factors such 

as clothing or occlusion. The initial stages capture the more apparent keypoints, while the subsequent 
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stages use these detections as anchors to identify more complex keypoints. This progressive 

optimization ensures that each keypoint is detected with increasing accuracy, thereby improving the 

robustness and reliability of the entire network in comprehensively mapping the human pose. 

Within the architecture of our integrated model, OpenPose assumes an indispensable role by 

providing intricate and precise estimations of human body poses, which are crucial for understanding 

and analyzing the subjects' movements and postures during rehabilitation exercises. OpenPose 

enhances the object detection capabilities of EfficientDet, which determines the subject's location 

within the environment, by offering a fine-grained analysis of the subject's skeletal pose. It produces 

detailed PCM and PAF, allowing for an exact mapping of individual body parts and their 

interconnections. The rich pose information gleaned from OpenPose is vital for the DRL component, 

as it enables the DRL model to make well-informed decisions about the actions that the rehabilitation 

robot should execute or assist the subject with, tailored to the subject's current pose and movement 

dynamics. 

OpenPose's role is pivotal not just in detection, but also in enhancing the adaptability of the 

rehabilitation process. It ensures that the rehabilitation robot can follow complex movements with 

high accuracy, vital for creating a responsive rehabilitation experience that adapts to the nuanced 

motions of patients. The data acquired by OpenPose continuously informs the DRL component, 

refining the robot's behavior through iterative interactions with the patient. This integration 

exemplifies the fusion of sophisticated computer vision with intelligent machine learning techniques, 

setting new standards for automated rehabilitation systems. 

The integration of OpenPose into our model is critical for the robot's ability to perceive, 

comprehend, and interact with the human element within the rehabilitation environment. It acts as a 

sophisticated sensory organ, influencing the machine's decision-making algorithms and allowing for 

adjustments tailored to the patient's immediate therapeutic requirements. This dynamic interaction 

ensures a personalized and effective rehabilitation session, as the robot can adapt its assistance in 

real-time based on the precise movement patterns identified by OpenPose. In essence, OpenPose is 

instrumental for achieving the high level of responsiveness and personalization that is imperative in 

contemporary rehabilitation robotics, solidifying its essential status in our experimental framework. 

3.4 DRL 

Deep Reinforcement Learning (DRL) is an amalgamation of the complexities of deep neural 

networks and the goal-directed dynamics of reinforcement learning. It's particularly adept at 

processing high-dimensional input data like images and sensor readings[28], drawing on the profound 

feature extraction capabilities of deep learning. Coupled with reinforcement learning, DRL strategizes 

actions to optimize long-term cumulative rewards. It embodies a learning paradigm where an 

intelligent agent masters navigating an environment through a system of rewards[63], reinforcing 

behaviors that lead to favorable outcomes. 

DRL stands out for its ability to interpret complex inputs and learn from the environment[64]. At 

its core are value functions and action-value functions, essential for estimating the agent's potential 

benefits in specific states or actions. These are defined by critical mathematical expressions, including 
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the Bellman equation for value functions and the Bellman optimality equation for action-value 

functions[65]. These equations provide a recursive solution to policy evaluation and improvement, 

guiding the agent to learn optimal behaviors through interaction with the environment[66]. The policy 

improvement theorem, a cornerstone of DRL, relies on these functions for policy updates, indicating 

the actions that maximize the action-value function for a state. 

The mathematical underpinnings of DRL are expressed through various equations that describe 

the process from policy evaluation to policy improvement. The value function, which estimates the 

benefit for the agent in a specific state, is given by: 

 

𝑉𝜋(𝑠) = 𝔼[∑  

∞

𝑡=0

𝛾𝑡𝑅𝑡+1|𝑆0 = 𝑠, 𝜋] （4） 

Here, 𝑉𝜋(𝑠) denotes the expected return when starting in state s and following policy 𝜋 with 

𝛾 as the discount factor and 𝑅𝑡+1 as the reward at time t+1. 

The action-value function, which assesses the value of taking action a in state s under policy 

𝜋, is defined as: 

 

𝑄𝜋(𝑠, 𝑎) = 𝔼[∑  

∞

𝑡=0

𝛾𝑡𝑅𝑡+1|𝑆0 = 𝑠, 𝐴0 = 𝑎, 𝜋] （5） 

The Bellman equation offers a recursive solution to the value function: 

 𝑉𝜋(𝑠) = ∑  

𝑎∈𝐴

𝜋(𝑎|𝑠)∑  

𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑉𝜋(𝑠′)] （6） 

For an optimal policy, we turn to the Bellman optimality equation for the action-value function: 

 [𝑄∗(𝑠, 𝑎) = ∑  

𝑠′∈𝑆

𝑃(𝑠′|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑚𝑎𝑥
𝑎′

 𝑄∗(𝑠′, 𝑎′)] （7） 

And finally, policy improvement is achieved through updates based on the action-value function: 

 
𝜋′(𝑠) = arg⁡𝑚𝑎𝑥

𝑎∈𝐴
 𝑄𝜋(𝑠, 𝑎) （8） 

In this way, the DRL model employs these principles to guide the rehabilitation robot, iterating 

over actions and refining strategies to optimize for the patient's therapeutic progress, making DRL an 

indispensable component in the quest for more autonomous and efficient rehabilitation robotics. 

In our integrated setup, DRL ingeniously combines the situational awareness provided by 

EfficientDet with the detailed human biomechanical insights from OpenPose. EfficientDet, with its 

object detection prowess, identifies the subject and relevant objects in the environment, setting a 

precise spatial context. OpenPose, on the other hand, offers a granular analysis of the subject's posture 

and limb positioning. DRL harnesses this combined data to compute the optimal sequence of actions 

that the rehabilitation robot should undertake, ensuring adaptability to the subject's real-time 

movements. This seamless integration of perception and action is what endows our model with 

predictive and responsive control capabilities, essential for a dynamic and interactive rehabilitation 

process. 
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DRL's multifaceted contribution to our model is paramount. It doesn't just process inputs; it 

transforms them into informed decisions, driving the rehabilitation robot's movements and 

interactions with patients. By doing so, DRL ensures that each movement and interaction is 

meticulously aligned with the patient's rehabilitation needs, providing a personalized and adaptive 

therapy experience. This adaptability is crucial in rehabilitation, where patient-specific needs and 

capabilities can widely vary and evolve. The continuous learning and adaptation of the DRL 

component ensure that our model effectively caters to a broad spectrum of scenarios, tailoring the 

rehabilitation experience and optimizing the recovery path for each patient. 

Moreover, the self-improving nature of DRL is what truly sets our model apart. It learns from 

each session, fine-tuning its strategies to enhance therapeutic efficacy. This continuous learning 

process not only propels our model to new heights of autonomy and efficiency but also centers it 

firmly around the needs of the patient, marking a significant leap towards advanced, patient-centric 

rehabilitation robotics. DRL's adaptive intelligence is, therefore, not just a tool but an integral 

component of our experimental design, ensuring that our model remains at the forefront of innovation 

in the field of rehabilitation technology 

4. Results 

4.1 Experimental Datasets 

To comprehensively validate our model, this experiment utilizes four distinct datasets: 

Human3.6M, MPII Human Pose, NTU RGB+D, and PoseTrack. These datasets, each with its unique 

characteristics and annotations, provide a multifaceted platform to rigorously assess the model's 

performance across various dimensions of human pose estimation and motion analysis. This 

comprehensive approach ensures a thorough validation of the model's capabilities, setting the stage 

for detailed evaluations and insights derived from each specific dataset. 

Human3.6M Dataset[67]: Human3.6M stands as one of the most extensive datasets for 3D human 

pose estimation, highly regarded in the research community for its vast size and the diversity of 

recorded human activities. The dataset encompasses 3.6 million 3D human poses accompanied by 

corresponding images. These poses were captured from 11 professional actors, each performing 17 

different scenarios, encompassing a wide range of everyday activities such as walking, eating, sitting, 

discussing, and phone interactions. Recorded using a sophisticated marker-based motion capture 

system, the dataset provides accurate 3D positions of various body joints, making it a valuable asset 

for developing and benchmarking 3D pose estimation models. Its extensive use in studies related to 

action recognition, human-computer interaction, and virtual reality underlines its significance in 

advancing the field of computer vision and machine learning. 

MPII Human Pose Dataset[68]: The MPII Human Pose dataset is a comprehensive collection 

specifically designed for evaluating articulated human pose estimation algorithms. It includes 

approximately 25,000 images, capturing over 40,000 individuals with annotated body joints. The 

annotations are detailed, providing 2D positions of various body joints, which are crucial for 

understanding human postures in diverse activities. The images in this dataset are sourced from 
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YouTube videos and represent a broad spectrum of human activities, including daily living activities, 

sports, and social interactions. The diversity and complexity of scenes in the MPII dataset make it an 

excellent resource for training robust 2D pose estimation models and benchmarking their 

performance against real-world scenarios. 

NTU RGB+D Dataset[69]: The NTU RGB+D dataset is tailored for research in the areas of 3D 

human action recognition and pose estimation, offering a substantial volume of RGB+D videos. With 

around 56,000 videos and 4 million frames captured using Microsoft Kinect v2 cameras, the dataset 

includes a wide array of 60 different action classes. These classes cover individual actions, two-person 

interactions, and health-related events, providing a comprehensive overview of human movements. 

The inclusion of both RGB and depth data adds a rich dimension to the dataset, enabling more 

nuanced analysis and model development for 3D human action recognition, pose estimation, and even 

predictive modeling of future actions. 

PoseTrack Dataset[70]: PoseTrack focuses on the challenge of human pose estimation and 

articulated tracking in video sequences, offering a substantial collection of videos that include 

complex scenes with multiple interacting individuals. The dataset is an invaluable resource for 

developing and evaluating algorithms on video-based pose estimation and articulated tracking tasks. 

Each person in the videos is meticulously annotated with body joint positions in each frame, providing 

a rich set of data for temporal pose estimation tasks. The PoseTrack dataset is instrumental for studies 

that require understanding the intricacies of human movements and poses over time, making it 

suitable for applications in sports analytics, action recognition, and interactive systems where 

temporal dynamics are key. 

Every one of these datasets represents a fundamental component within its own area of expertise, 

providing distinct perspectives and possibilities for furthering research in fields such as human pose 

estimation, action recognition, and the development of interactive systems. Each dataset's unique 

attributes contribute significantly to the depth and breadth of insights in these domains, facilitating 

advancements and innovations. 

4.2. Experimental Details 

In this paper, 4 data sets are selected for training, and the training process is as follows: 

Step 1: Data Processing 

Data preprocessing is a crucial step in the development and implementation of the EfficientDet-

OpenPose-DRL network model, ensuring the data is optimally prepared for model training and 

evaluation. The specific steps include: 

Data Cleaning: Initially, a vast collection of images and videos from rehabilitation exercises and 

daily activities showcasing various human postures and movements must be gathered. This step 

involves removing low-quality data, such as blurry images, severely occluded videos, and irrelevant 

background information. For instance, images captured under extreme lighting conditions or those 

that fail to clearly identify human keypoints due to improper shooting angles would be discarded. 

This process ensures the quality of the data, laying a solid foundation for subsequent model training 

and evaluation. 
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Data Standardization: In this step, all image data will be resized to a uniform dimension and 

resolution, and pixel values will be normalized. This standardization ensures consistency in model 

input and improves training efficiency. We might choose to resize all images to a uniform size of 

1024x1024 pixels and normalize pixel values to range between 0 and 1. Such standardization helps 

reduce computational complexity during model training and avoids potential numerical instability 

issues. 

Data Splitting: The dataset will be divided into three parts for training, validation, and testing 

the model. A common division ratio is 70% for the training set, 15% for the validation set, and 15% 

for the testing set. It's critical to ensure that these datasets are representative in terms of diversity, 

including different lighting conditions, background settings, and human postures. For example, if the 

total dataset comprises 10,000 samples, we would select 7,000 samples for the training set, 1,500 for 

the validation set, and 1,500 for the testing set. 

Through these preprocessing steps, we can prepare a high-quality dataset for the development 

of the EfficientDet-OpenPose-DRL network model. This preparation enhances the model's 

performance in applications involving rehabilitation robots, ensuring it can accurately understand and 

assist human movements. 

Step 2: Model Training 

The model training phase is pivotal in the development of the EfficientDet-OpenPose-DRL 

network model, as it directly influences the model's effectiveness in real-world rehabilitation robot 

applications. This phase involves a careful consideration of network parameter settings, model 

architecture design, and the actual training process. Each of these components plays a critical role in 

ensuring the model's performance and adaptability. 

Network Parameter Settings: In configuring our network parameters, we prioritize optimization 

for accuracy and computational efficiency. For the EfficientDet model, we select a D3 variant with a 

backbone of EfficientNet-B3, setting the input image size to 1024x1024 pixels. This choice strikes a 

balance between computational demand and the ability to process high-resolution images effectively. 

The learning rate is set at 0.001, with a batch size of 32, to ensure stable convergence without 

overloading the hardware resources. For the OpenPose component, we employ a learning rate of 

0.0004 and a batch size of 16, given its intensive computational requirements for keypoint detection. 

The DRL module uses an epsilon decay strategy starting from 1.0 to 0.01 over 100,000 training steps, 

ensuring a gradual shift from exploration to exploitation. 

Model Architecture Design: Our model architecture integrates the strengths of EfficientDet for 

object detection, OpenPose for human pose estimation, and DRL for adaptive decision-making. The 

EfficientDet module is designed with a compound scaling method, enhancing its ability to detect 

humans and objects in various conditions. OpenPose is structured to identify 25 key body points, 

providing detailed posture analysis essential for precise rehabilitation assistance. The DRL model is 

built upon a custom neural network architecture with three hidden layers, each consisting of 256 

neurons, to process the combined input from EfficientDet and OpenPose and output optimized 

movement strategies. This architecture supports the processing of complex visual information and 
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decision-making in dynamic environments. 

Model Training Process: The training process is executed in stages to accommodate the 

complexity of the integrated model. Initially, the EfficientDet and OpenPose modules are pre-trained 

on publicly available datasets such as COCO and MPII for 50 epochs each to establish a baseline 

understanding of object detection and human pose estimation. Subsequently, these modules are fine-

tuned on our specific rehabilitation dataset for an additional 30 epochs to adapt to the nuances of 

rehabilitation scenarios. The DRL module is trained using a simulated environment that replicates 

various rehabilitation exercises, running for 200,000 steps. Throughout the training, we employ early 

stopping based on the validation loss to prevent overfitting, with a patience parameter of 10 epochs. 

This staged training strategy ensures that each component of the model is adequately prepared before 

their integration, ultimately leading to a cohesive system capable of providing effective and 

personalized rehabilitation support. 

Through this meticulous training process, incorporating specific hyperparameter settings and a 

carefully designed model architecture, the EfficientDet-OpenPose-DRL network model is optimized 

for the complex requirements of rehabilitation robotics, promising significant improvements in 

patient care and support. 

Step3: Indicator Comparison Experiment 

During this stage, we intend to benchmark our model against other widely recognized models in 

the fields of regression and classification. To ensure a fair and consistent evaluation, all models will 

be trained and assessed on identical sets of training and testing data. Following this, we'll conduct a 

detailed comparison of each model's performance, utilizing key metrics including accuracy, recall, 

F1 score, and the Area Under the Curve (AUC) measure. This approach will allow us to precisely 

gauge and contrast the efficacy of each model across various tasks and datasets, providing a 

comprehensive overview of their capabilities. Descriptions of these performance metrics will be 

detailed subsequently, offering insights into their significance and calculation. 

1. Accuracy: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 （9） 

where TP represents the number of true positives, TN represents the number of true negatives, 

FP represents the number of false positives, and FN represents the number of false negatives. 

2. Recall: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 （10） 

where TP represents the number of true positives, and FN represents the number of false 

negatives. 

3. F1 Score: 

 
𝐹1⁡𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 （11） 

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 represents the precision and 𝑅𝑒𝑐𝑎𝑙𝑙 represents the recall. 
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4. AUC: 

 
𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑥)𝑑𝑥

1

0

 （12） 

where ROC(x) represents the relationship between the true positive rate and the false positive 

rate when x is the threshold. 

5. Parameters(M): 

Count the number of adjustable parameters in the model, in millions. 

6. Inference Time(ms): 

Measure the time required for the model to perform inference, in milliseconds. 

7. Flops(G): 

Count the number of floating-point operations required for the model to perform inference, in 

billions. 

8. Training Time(s): 

Measure the time required for the model to train, in seconds. 

4.3. Experimental Results and Analysis 

To rigorously evaluate the efficacy of our EfficientDet-OpenPose-DRL network model, we 

embarked on an extensive series of comparative experiments, setting our innovative framework 

against the current leading models in the field of motion rehabilitation robotics. These comparative 

studies meticulously assessed crucial performance indicators such as accuracy, precision, recall, F1 

score, and computational efficiency. For a comprehensive analysis, we utilized several benchmark 

datasets known for their complexity and diversity: Human3.6M Dataset, MPII Human Pose Dataset, 

NTU RGB+D Dataset, and PoseTrack Dataset. Such a multifaceted approach not only underscores 

the robustness and advanced capabilities of our model but also establishes a new reference point for 

subsequent research endeavors in the nuanced domain of motion capture and analysis for 

rehabilitation robotics. Through this comparative lens, we aim to demonstrate the tangible 

improvements our model brings to the table in facilitating more personalized, adaptive, and effective 

rehabilitation experiences. 

Comparative assessment1: 

Table 1. Comparison of Accuracy(%), Recall(%), F1 Sorce(%), and AUC(%) performance of 

different models on Human3.6M Dataset, MPII Human Pose Dataset, NTU RGB+D Dataset and 

PoseTrack Dataset 

  Human3.6M Dataset MPII Human Pose Dataset 

Model Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC 

Assad et 

al. [71] 
90.36 89.29 90.04 88.96 92.52 91.44 86.28 87.45 

Struijk et 

al. [72] 
92.72 87.01 90.59 93.7 87.48 86.75 88.19 86.03 

Song et al. 

[73] 
96.87 86.26 90.43 91.45 90.88 89.02 90.37 89.72 
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Wang et 

al. [74] 
86.61 87.4 87.81 91.68 88.28 84.74 88.81 94.05 

Zhao et al. 

[75] 
95.93 92.71 85.16 91.12 94.31 89.74 90.05 87.01 

Hu et al. 

[76] 
90.1 89.97 91.69 91.68 93.08 88.07 85.46 85.53 

Ours 94.48 96.39 93.26 93.07 95.93 93.47 94.76 96.84 

  NTU RGB+D Dataset PoseTrack Dataset 

Model Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC 

Assad et 

al. 
92.07 87.69 86.92 93.31 91.39 92.21 89.57 90.73 

Struijk et 

al. 
96.17 90.11 85.94 88.33 90.65 91.08 90.34 90.55 

Song et al. 86.8 85.5 89.73 90.16 95.71 94.3 85.75 88.34 

Wang et 

al. 
89.04 89.97 86.32 93.69 90.64 94.13 90.31 84.87 

Zhao et al. 93.16 89.1 84.67 91.36 91.63 84.76 91.44 90.79 

Hu et al. 91.46 84.54 89.11 85.26 96.24 88.33 91.7 91.65 

Ours 98.58 94.23 92.72 94.36 96.99 95.58 93.32 93.43 

 

As illustrated in Table 1, we conducted a performance comparison of different models across 

four distinct datasets: Human3.6M Dataset, MPII Human Pose Dataset, NTU RGB+D Dataset, and 

PoseTrack Dataset, covering four key performance metrics: Accuracy, Recall, F1 Score, and AUC 

(Area Under the Curve). It is evident from the table that our method outperforms the comparative 

models across all datasets. 

Specifically, on the Human3.6M Dataset, our model demonstrated an accuracy of 94.48%, a 

recall of 96.39%, an F1 score of 93.26%, and an AUC of 93.07%, significantly higher than other 

models. For instance, compared to Struijk et al., our model showed an increase of 1.76 percentage 

points in accuracy and a substantial 9.38 percentage points in recall, indicating our method's superior 

accuracy and comprehensiveness in correctly identifying action poses. On the MPII Human Pose 

Dataset, our model also excelled, achieving an accuracy of 95.93%, a recall of 93.47%, an F1 score 

of 94.76%, and an AUC of 96.84%, the highest among all models compared. Especially, compared to 

Hu et al., our accuracy improved by 2.85 percentage points, and the AUC by 11.31 percentage points, 

significantly enhancing the model's generalization ability and reliability. For the NTU RGB+D 

Dataset, our approach again displayed exceptional performance, reaching an accuracy of 98.58%, a 

recall of 94.23%, an F1 score of 92.72%, and an AUC of 94.36%. This is 2.41 percentage points 

higher in accuracy and 6.03 percentage points higher in AUC compared to Struijk et al., further 

proving the effectiveness of our method. Lastly, on the PoseTrack Dataset, our model led with an 

accuracy of 96.99%, a recall of 95.58%, an F1 score of 93.32%, and an AUC of 93.43%, 
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outperforming all other models. Compared to Song et al., our accuracy increased by 1.28 percentage 

points, and the recall by 1.28 percentage points, underscoring our method's robust performance in 

complex scenes. 

In summary, our method significantly surpasses existing technologies across multiple key 

performance metrics, not only improving accuracy and recall but also demonstrating strong 

competitiveness in F1 scores and AUC. These results not only validate the effectiveness of our 

approach but also provide a powerful benchmark for future research. Figure 4 visualizes the contents 

of the table, further showcasing the advantages of our method relative to other comparative models 

in a more intuitive manner, allowing readers to more clearly understand the performance differences 

between the models. 

 

Figure 4. Comparison of Model Performance on Different Datasets. 

 

Comparative assessment2: 

Table 2. Comparison of Parameters(M), Flops(G), Inference Time(ms), and Training Time(s) 

performance of different models on Human3.6M Dataset, MPII Human Pose Dataset, NTU RGB+D 

Dataset and PoseTrack Dataset 

 Human3.6M Dataset MPII Human Pose Dataset 

Model Parameters 

(M) 

Flops 

(G) 

Inference 

Time(ms) 

Training 

Time(s) 

Parameters 

(M) 

Flops 

(G) 

Inference 

Time(ms) 

Training 

Time(s) 

Assad et 

al. 

574.11 5.96 8.46 585.95 526.59 6.94 10.05 498.66 

Struijk 

et al. 

790.42 9.51 11.73 765.31 731.22 9 12.65 759.66 

Song et 

al. 

670.21 5.7 9.44 490.4 485.35 8.39 8.71 408.07 
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Wang et 

al. 

676.67 8.97 13.16 618.56 639.85 8.87 12.95 631.35 

Zhao et 

al. 

461.03 5.36 8.71 489.09 462.19 5.76 7.96 437.03 

Hu et al. 381.49 4.84 7.16 387.02 372.16 4.88 7.52 373.68 

Ours 340.25 4.46 6.26 328.53 318.64 4.56 6.52 336.7 

 NTU RGB+D Dataset PoseTrack Dataset 

Model Parameters 

(M) 

Flop 

s(G) 

Inference 

Time(ms) 

Training 

Time(s) 

Parameters 

(M) 

Flops 

(G) 

Inference 

Time(ms) 

Training 

Time(s) 

Assad et 

al. 

564.21 5.92 8.85 508.45 461.71 7.24 8.72 539.6 

Struijk 

et al. 

772.89 9.49 12.92 689.2 608.58 8.41 12.46 744.66 

Song et 

al. 

777.94 8.25 12.66 649.07 715.07 5.55 10.04 718.98 

Wang et 

al. 

677.94 8.02 11.32 773.71 732.87 8.5 11.21 705.81 

Zhao et 

al. 

411.4 6.04 7.9 425.9 452.81 5.97 8.62 414.94 

Hu et al. 382.35 5.31 7.14 377.04 374.66 5.43 7.42 385.59 

Ours 337.08 4.31 6.11 326.19 319.05 4.4 6.39 337.44 

 

Table 2 compares in detail the efficiency of our designed model on the Human3.6M dataset, the 

MPII human posture dataset, the NTU RGB+D dataset, and the PoseTrack dataset, focusing on 

Parameters (M), Flops (G), Inference Time (ms), and Training Time (s). This evaluation sheds light 

on the computational efficiency and operational performance of different models, highlighting the 

strengths of our proposed method. 

Our method demonstrates a significant advantage in computational efficiency and speed across 

all datasets. Specifically, on the Human3.6M Dataset, our model requires the least number of 

parameters (340.25M) and Flops (4.46G), leading to the fastest inference time (6.26ms) and the 

shortest training time (328.53s) among the compared models. This represents a substantial 

improvement in efficiency, with a decrease in parameters by 33.86M compared to Hu et al., the next 

most efficient model in terms of parameters, and a reduction in Flops by 0.38G. Similarly, on the 

MPII Human Pose Dataset, our model achieves remarkable efficiency with only 318.64M parameters 

and 4.56G Flops, resulting in an inference time of 6.52ms and a training time of 336.7s. This 

underscores our method's capability to deliver high-performance pose estimation with minimal 

computational resources, outperforming other models such as Zhao et al. and Hu et al. in terms of 

both model size and speed. On the NTU RGB+D Dataset, our method continues to excel, showcasing 

the lowest parameters (337.08M) and Flops (4.31G), coupled with the fastest inference (6.11ms) and 
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training times (326.19s). This efficiency is critical for real-time applications and large-scale training 

scenarios, providing a significant edge over competitors like Wang et al. and Song et al. And for the 

PoseTrack Dataset, our model maintains its lead with the fewest parameters (319.05M) and Flops 

(4.4G), achieving an inference time of 6.39ms and a training time of 337.44s. This demonstrates our 

method's robustness and adaptability across different datasets, ensuring fast and efficient pose 

estimation even in challenging scenarios. 

From this we can see that our approach not only excels in accuracy and recall, as shown in the 

previous table, but also dominates in computational efficiency and operational speed. The reduced 

model size and computational requirements, alongside faster inference and training times, make our 

method highly suitable for real-time applications and large-scale deployment. This comprehensive 

performance analysis further solidifies our method's position as a leading solution in the field of pose 

estimation. Figure 5 visualizes the contents of the table, further showcasing the advantages of our 

method relative to other comparative models in a more intuitive manner, allowing readers to more 

clearly understand the performance differences between the models. 

 

Figure 5. Comparison of Model Parameters(M), Flops(G), Inference Time(ms), and Trainning 

Time(s) Performance on Different Datasets. 

 

Ablation experiment1: 

Table 3. Ablation experiments on the EfficientDet using different datasets 

Model 

Datasets 

Human3.6M Dataset MPII Human Pose Dataset NTU RGB+D Dataset PoseTrack Dataset 
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cy 

Rec
all 

F1 

Sco

re 

AU
C 

Accura
cy 

Rec
all 

F1 

Sco

re 

AU
C 

Accura
cy 

Rec
all 

F1 

Sco

re 

AU
C 

Accura
cy 

Rec
all 

F1 

Sco

re 

AU
C 

SSD 87.12 88.6
4 

84.
68 

86.
38 

93.27 92.7
1 

88.
55 

93.
3 

94.6 84.7
2 

85.
07 

88.
21 

89.12 90.9
3 

87.
49 

89.
67 

RetinaN

et 

87.3 87.6

5 

84.

99 

86.

56 

86.8 92.0

5 

87.

79 

90.

05 

96.54 91.0

3 

90.

91 

93.

17 

91.82 89.3

6 

85.

97 

87.

12 



 Journal of Intelligence Technology and Innovation (JITI), 2024, 2(3), 47-77. 

69 
 

CenterN

et 
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5 
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51 

94.
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93.
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As shown in Table 3, a series of ablation experiments were conducted to compare the 

performance of EfficientDet with other models (SSD, RetinaNet, CenterNet) across various datasets, 

including the Human3.6M Dataset, MPII Human Pose Dataset, NTU RGB+D Dataset, and PoseTrack 

Dataset. These experiments cover four key metrics: Accuracy, Recall, F1 Score, and AUC (Area 

Under the Curve). 

The data clearly indicate that EfficientDet demonstrates superior performance across all datasets, 

particularly in terms of accuracy and AUC. For instance, on the Human3.6M Dataset, EfficientDet 

achieved an accuracy of 96.03% and an AUC of 94.89%, significantly outperforming other models 

like SSD, which reached an accuracy of 87.12% and an AUC of 86.38%. Additionally, on the MPII 

Human Pose Dataset, EfficientDet also leads with an accuracy of 96.69% and an AUC of 94.64%, 

further proving its efficiency and accuracy in complex pose estimation tasks. 

On the NTU RGB+D Dataset, EfficientDet continues to maintain its leading position with an 

accuracy of 96.98% and an AUC of 95.02%, much higher than CenterNet's accuracy of 87.94% and 

AUC of 86.85%. Lastly, on the PoseTrack Dataset, EfficientDet surpasses other models with an 

accuracy of 94.02% and an AUC of 92.16%, where CenterNet recorded an accuracy of 91.41% and 

an AUC of 86.45%. 

These comparisons clearly demonstrate EfficientDet's comprehensive improvement across 

accuracy, recall, F1 score, and AUC on multiple datasets. This performance can be attributed to 

EfficientDet's unique architectural design, including its efficient network structure and optimized 

feature extraction capabilities, which collectively contribute to its exceptional performance in a 

variety of tasks and complex scenarios. 

EfficientDet not only excels in accuracy but also shows significant advantages in efficiency and 

performance. These experimental results validate the potential application of EfficientDet in various 

pose estimation tasks and provide important references for future research. Figure 6 visualizes the 

content of the table, further intuitively showcasing the performance advantages of EfficientDet 

relative to other models, allowing readers to more clearly understand the powerful capabilities of 

EfficientDet. 
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Figure 6. Comparison of EfficientDet Model Performance on Different Datasets. 

 

Ablation experiment2: 

Table 3. Ablation experiments on the EfficientDet using different datasets 
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Table 4 presents ablation experiments conducted on the Deep Reinforcement Learning (DRL) 

model using different datasets: Human3.6M Dataset, MPII Human Pose Dataset, NTU RGB+D 

Dataset, and PoseTrack Dataset. These experiments evaluate the model's performance across four 

crucial metrics: Accuracy, Recall, F1 Score, and AUC (Area Under the Curve). 

The data from Table 4 highlight the superior performance of the DRL model across all evaluated 

datasets, especially when comparing its results to those of DQN, SAC, and A3C models. For instance, 

on the Human3.6M Dataset, the DRL model achieved a remarkable accuracy of 97.45% and an AUC 

of 95.37%, significantly outperforming the DQN model, which had an accuracy of 96.45% and an 

AUC of 86.76%. This demonstrates the DRL model's exceptional ability to accurately predict and 

evaluate actions within this dataset. Similarly, on the MPII Human Pose Dataset, the DRL model 

showed strong performance with an accuracy of 93.43% and an AUC of 94.03%, surpassing the SAC 
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model's accuracy of 91.02% and AUC of 85.89%. This underscores the DRL model's robustness and 

effectiveness in pose estimation tasks, further evidenced by its superior recall and F1 Score compared 

to other models. 

On the NTU RGB+D Dataset, the DRL model continues to excel, achieving an accuracy of 

91.93%, a recall of 94.22%, an F1 Score of 93.83%, and an AUC of 93.98%. These results are 

markedly better than those of the A3C model, which, despite its competitive performance, falls short 

with an accuracy of 86.76% and an AUC of 90.58%. In the PoseTrack Dataset, the DRL model 

outshines its counterparts with an accuracy of 95.97%, a recall of 94.4%, an F1 Score of 94.86%, and 

an AUC of 94.25%, demonstrating its superior capability to handle dynamic and complex motion 

tracking tasks. 

In conclusion, the DRL model not only demonstrates exceptional accuracy across various tasks 

and datasets but also shows significant improvements in recall, F1 Score, and AUC. These results 

validate the effectiveness of the DRL model in handling complex reinforcement learning tasks, 

offering insights into its application in real-world scenarios. The comprehensive performance 

advantage of the DRL model is further visualized in Figure 7, providing an intuitive comparison that 

underscores the model's strengths relative to DQN, SAC, and A3C models, thus highlighting the DRL 

model's robust capabilities in deep reinforcement learning tasks. 

 

Figure 7. Efficient comparison of MPC with other models on different datasets 

 

5. Conclusions 

In this paper, we introduced and meticulously evaluated the EfficientDet-OpenPose-DRL 

network model, a groundbreaking framework that synergizes the strengths of EfficientDet for high-

precision environmental perception, OpenPose for detailed analysis of human posture and movement, 

and Deep Reinforcement Learning (DRL) for adaptive, intelligent decision-making. This model was 
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specifically developed to address the limitations of existing rehabilitation robots, which often struggle 

with accurately interpreting complex human movements and adapting to the dynamic needs of 

individuals in real-time. Through a series of comprehensive experiments, we validated the model's 

effectiveness in enhancing the accuracy, safety, and personalization of rehabilitation therapies. Our 

experimental process involved simulating a variety of rehabilitation scenarios to test the model's 

responsiveness, adaptability, and precision in tracking and analyzing human movements, while also 

assessing its ability to learn and optimize rehabilitation strategies over time. The results unequivocally 

demonstrated that our model significantly surpasses traditional rehabilitation robotic systems in terms 

of environmental understanding, movement accuracy, and the ability to provide tailored rehabilitation 

assistance. 

The focus of this research was to bridge the gaps in environmental adaptability, precise action 

recognition, and personalized care in rehabilitation robotics. By integrating advanced computer vision 

and deep learning techniques, the EfficientDet-OpenPose-DRL model enhances the capabilities of 

rehabilitation robots, making them more responsive and effective in dynamic, real-world scenarios. 

This study not only contributes to the immediate improvement of robotic rehabilitation systems but 

also lays the groundwork for future research aimed at further enhancing these technologies. 

Despite these promising outcomes, the model does exhibit certain limitations that warrant 

attention. First, the integration of three advanced technological components within the model imposes 

high computational demands, potentially restricting its deployment in resource-constrained 

environments or on portable rehabilitation devices where processing power is limited. Second, while 

the model shows exceptional performance in controlled experimental setups, its efficacy in dealing 

with the unpredictable and variable conditions typical of real-world environments remains a challenge. 

The adaptability of the model to factors such as unpredictable lighting, diverse human behavior, and 

complex backgrounds needs further enhancement to ensure its reliability and effectiveness across all 

potential rehabilitation settings. 

As we look to the future, our research agenda will aim to address these limitations and explore 

new avenues for enhancing the model's utility and applicability. Efforts will be directed towards 

optimizing the computational efficiency of the model, enabling it to operate seamlessly on a broader 

array of hardware platforms, including low-power devices. We also plan to enhance the model's 

robustness and adaptability in uncontrolled environments, potentially through the integration of 

additional sensory inputs or the development of more sophisticated algorithms capable of handling 

environmental and situational variability. The significance of our work extends beyond the immediate 

improvements to rehabilitation robotics, setting a foundation for future research at the intersection of 

computer vision, deep learning, and healthcare technology. By advancing the capabilities of 

rehabilitation robots, our work contributes to the overarching objective of delivering more effective, 

personalized, and accessible rehabilitation services, thereby improving outcomes and quality of life 

for individuals undergoing rehabilitation therapy. 
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