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ABSTRACT 

Large-scale events such as concerts, sports competitions, and major conferences are critical in 

shaping the environment and society. These events require consideration of numerous factors, 

including environmental parameters of the venue, such as carbon emissions, energy consumption, 

and temperature. Therefore, adopting sustainable practices aligned with carbon neutrality aspirations 

is imperative. In this context, integrating deep learning technology holds significant promise for 

assessing and promoting the sustainability of such events. Our model incorporates BERT 

(Bidirectional encoder representations from transformers) and deep neural network (DNN) modules 

to construct an evaluation framework. BERT, renowned for its robust natural language processing 

capabilities, adeptly absorbs and encodes textual knowledge into information vector representations. 

The DNN component in our model establishes an overarching framework for predictive modelling, 

providing actionable guidance and informed decision-making tools by analyzing the assembly of 

large-scale venues. The experimental results show that our model outperforms other state-of-the-art 

models, achieving at least a 1% improvement in accuracy across four datasets. 

Additionally, error analysis reveals that our model reduces errors to below 10%, outperforming 

other models. These experimental analyses validate the superiority and practical applicability of our 

model. Therefore, our model offers a promising analytical approach for improving the quality and 

sustainability of large-scale events in the realm of carbon emissions research within event venues. 

 

Keywords: BERT, MHA, DNN, Sustainability Assessment, Sports Events, Carbon Neutral Principle 

 

1. Introduction 



Journal of Intelligence Technology and Innovation (JITI), 2024, 2(4), 1-23. 

  2  
 

The establishment of large-scale venues often accompanies major events such as sports 

competitions[1], concerts, and large conferences, which have significant environmental and societal 

impacts. Hosting such events demands substantial resources and energy consumption while also 

generating waste and pollutants. Consequently, assessing and enhancing the sustainability of large-

scale venues has become a global concern. In recent years, governments and organizations worldwide 

have introduced goals related to carbon neutrality[2], future sustainability, and sustainable 

development, calling for active participation across industries and sectors[3]. In light of these 

challenges, an increasing body of research has focused on sustainability, particularly within the 

context of sporting events. This study, specifically, examines the sustainable development of large-

scale venues, primarily focusing on the organization and management of sports events [4]. Below, we 

present a selection of deep learning methods that are commonly applied to address these sustainability 

challenges. 

The Long Short-Term Memory (LSTM)[5] model is a well-established recurrent neural network 

designed to handle time series data and predict future trends. In the context of sustainability 

assessments for sports events, LSTM can be used to forecast main indicators such as carbon emissions 

and energy consumption. Its strength is capturing important features in sequential data, enabling 

relatively accurate predictions. However, training an LSTM model can be time-intensive and 

demands extensive data and computational resources. 

The Convolutional Neural Network (CNN)[6] model is a widely used deep learning model, 

particularly effective for image recognition and spatial data modelling. In assessing the sustainability 

of sports events, CNNs can be employed to extract features and patterns from spatial data, enhancing 

the accuracy of the assessment. Their ability to capture spatial data features makes them particularly 

valuable. However, extracting and processing these features is complex and requires substantial 

computational resources. 

The BERT model[7] is a natural language processing model typically used for text data 

processing and language modelling. For our assessment goal, the BERT model can be employed to 

handle relevant textual data and extract critical information and features. It can process complex 

textual data and extract crucial information and features from the data. However, building and training 

BERT models is demanding, particularly in terms of computational resources and time. 

The DNN [8] is a classic deep-learning model often used for building complex models and 

making predictions. The DNN model can be utilized for overall modelling and prediction, providing 

guidance and decision support for assessment and improvement. It can handle complex data and 

models, demonstrating good predictive capabilities. However, it requires substantial data, 

computational resources, high-standard model building, and training. The Generative Adversarial 

Network (GAN) [9] is a deep learning model commonly used for generating more realistic and 

feasible data and models. To our end, the GAN model can be employed to generate targets and 

indicators that align more closely with carbon neutrality and sustainable development principles, 

guiding the improvement and decision-making in sports events. It can be leveraged to generate data 

and models that are more aligned with reality, demonstrating better practical value. However, it faces 
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the same problem as the DNN model. 

Traditional methods for sustainability assessment, such as LSTM and CNN, have high demands 

for data processing, model training, and computational resources. This paper proposes a novel 

approach based on the BERT-MHA-DNN model to overcome these challenges. This comprehensive 

modelling method integrates the BERT, Multi-Head Attention (MHA), and Deep Neural Network 

(DNN) models to assess sustainability metrics better and provide improvement strategies for events 

at large venues. The BERT model, pre-trained on a vast corpus of text data, encodes rich linguistic 

information into vector representations, enabling the model to handle textual data more effectively. 

The MHA model is then employed to capture connections and determine the importance of different 

data features, offering a more in-depth and precise assessment of sustainability indicators. The self-

attention mechanism in the MHA model allows the system to focus on relevant data, enhancing 

accuracy and robustness. Finally, the DNN model is used for comprehensive modelling and prediction. 

It excels in learning complex patterns and correlations in the data, which enables it to generate specific, 

actionable recommendations for improving the sustainability of sports events. This integrated 

approach offers more accurate and detailed guidance for event organizers, policymakers, and other 

stakeholders, helping them implement effective measures to enhance the sustainability of large-scale 

events. 

The innovative approach detailed in this study contributes significantly to the comprehensive 

assessment of environmental sustainability for events at large venues. It plays a crucial role in 

mitigating environmental and social impacts while actively promoting the pursuit of carbon neutrality 

and sustainable development goals. This method offers valuable insights and practical solutions for 

enhancing the sustainability of large-scale events, aligning with global efforts to address 

environmental challenges. 

This paper harnesses the potential encapsulated within data and models by adeptly utilizing deep 

learning methodologies. This pioneering approach introduces a novel perspective and extends fresh 

paradigms to assess and elevate the sustainability of events, laying a foundation for novel insights 

and innovative strategies. 

 The methodology posited in this research seamlessly integrates textual and contextual data, 

underscoring its commitment to precision and inclusivity within the evaluation process. Moreover, 

its commendable predictive prowess and decision-support capabilities converge to offer tangible and 

far-reaching implications, thereby furnishing a valuable arsenal of applications for future 

implementation endeavours. 

In the following sections of this paper, we will first explore recent literature in Section 2. Next, 

Section 3 will explain our employed approach, which incorporates the BERT, MHA, and DNN 

models. Section 4 will focus on the experimental phase, including specific methodologies and 

comparisons with other models. Finally, Section 5 will conclude the paper. 

2. Related Work 
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2.1 Long Short-Term Memory Model 

The LSTM [10] model is a type of recurrent neural network that can handle time-series data and 

exhibit long-term memory. For our assessment task, LSTM models can help process various time-

series data related to events, encompassing historical event statistics within large sports stadiums and 

weather data. LSTM[11] holds significant potential and promise for the sustainability assessment and 

enhancement of sports events[12]. An LSTM model can predict trends and future developments with 

various historical event data, such as attendance rates, revenue, and carbon emissions[13]. 

Furthermore, an LSTM model can predict the impact of weather on sports events, assisting event 

organizers in making necessary adjustments and decisions.   

One of the strengths of LSTM models is their ability to handle long-term dependencies, allowing 

them to consider the influence of relatively extensive time spans when dealing with time-series data. 

Additionally, LSTM models exhibit flexibility and adaptability in handling sequences of varying 

lengths. The training process can optimize LSTM models using the backpropagation algorithm, 

resulting in efficient training speeds. However, LSTM models do have certain limitations. Firstly, 

they possess high complexity, demanding substantial computational resources and time. Secondly, 

LSTM models require high-quality, large-scale data and appropriate data preprocessing. Additionally, 

when processing time-series data, LSTM models may encounter issues like gradient vanishing or 

exploding gradients, which can impact model training and predictive performance. 

2.2 Graph Neural Network 

The Graph Neural Network (GNN) model[14] is a neural network model based on graph 

structures. It is employed for analyzing and processing graph data, such as social networks and 

knowledge graphs. To reach our goal mentioned above of assessment, GNN models can be applied 

in analyzing and processing complex and event-relating relational network data, including 

relationships among stakeholders, between large venue locations, and among event activities. 

Here are some further explanations of the application. First, a GNN model can be used to predict 

sustainability indicators of events, such as energy consumption, carbon emissions, and social impacts. 

Second, a GNN model [15][43] can help analyze and optimize events’ organizational structure and 

operational patterns, such as venue positioning and scheduling of large activities. 

The efficacy of a GNN model lies in its ability to handle graph-structured data, capturing and 

leveraging complex relationships and interactions while exhibiting good generalization performance 

and interpretability and undergoing end-to-end training and optimization, demonstrating adaptability 

and scalability[16]. When dealing with large-scale data, a GNN model [17][44] can be optimized 

using techniques like sampling and dimensionality reduction to raise training and prediction 

efficiency. Apart from the advantages sketched above, a GNN model has limitations; first, its 

interpretability and stability need further improvement, especially when dealing with complex graph 

data, and appropriate designs and algorithms are needed. Second, all GNN models require high-

quality, large-scale data and proper data preprocessing. Additionally, GNN models may encounter 

overfitting or underfitting issues when handling graph data, necessitating suitable hyperparameter 

tuning and model selection. 
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2.3 eXtreme Gradient Boosting Model 

The eXtreme Gradient Boosting (XGBoost) model[18] [45]is an ensemble learning model based 

on decision trees, widely employed for classification and regression tasks, and has achieved excellent 

results in various machine learning competitions. To reach our assessing goal, the XGBoost model 

can be utilized to process structured data related to events, such as historical data of large-scale 

activities and participant information. 

The multiple applications of an XGBoost model[19][46] in assessing the sustainability of large-

scale venue events are as follows. First, it can be used to predict sustainability indicators of events, 

including attendance rates, revenue, and carbon emissions. Second, an XGBoost model[20] can also 

be applied to analyze and predict event outcomes and trends, such as the results of football matches 

within sports stadiums and team performance. 

One of the strengths of the XGBoost model[21] lies in its robust predictive performance and 

generalization capabilities. In other words, it can handle high-dimensional sparse data and capture 

non-linear relationships. Additionally, the XGBoost model demonstrates good interpretability and 

robustness, displaying tolerance to outliers and missing values. During training, an XGBoost model 

obtains enhanced generalization and robustness within an optimization via techniques like 

regularization and pruning. Nevertheless, the XGBoost model also has some limitations. 

3. Materials and Methods 

3.1 Overview of Our Network 

As previously mentioned, this study aims to explore sustainable assessment and improvement 

methods for large-scale venue events, following the principles of carbon neutrality. To achieve this, 

the BERT-MHA-DNN model was employed for modeling and prediction, assuming that the scenario 

involves venues used for sports events. In this context, BERT is used to convert input text into vector 

representations, MHA (Multi-Head Attention) is utilized to extract relevant features from the text due 

to its powerful feature extraction capabilities, and DNN (Deep Neural Network) is applied for 

modeling and prediction based on the extracted features. Figure 1 illustrates the overall workflow: 

 

Figure 1. Overall flow chart of the model 

The implementation of this approach includes several steps: data collection and preprocessing, 

formulation of sustainability assessment indicators, BERT embedding representation, MHA feature 

extraction, DNN modelling and prediction, and result analysis and presentation. Firstly, sports event-
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related data is collected, including information about venues, teams, and participants. The data is 

processed and cleaned to ensure data quality and accuracy. Secondly, sustainability assessment 

indicators based on the principle of carbon neutrality are formulated, including carbon emissions, 

energy consumption, and waste management., to ensure that the assessment indicators are 

scientifically sound and practical. Next, the BERT model converts the sports event-related 

information into embedded vector representations to facilitate subsequent modelling and prediction, 

ensuring that the data representation contains semantic information and contextual associations. Then, 

the MHA model is employed to extract relevant features from the embedded vectors to optimize the 

model’s performance further, ensuring effective and robust feature extraction. Subsequently, the DNN 

model is utilized to model and predict based on the extracted features, obtaining sustainable 

assessment results and improvement strategies for sports events, ensuring accurate and practical 

model predictions. Finally, the predicted results of the model are analyzed and presented, providing 

visualized and interpretable result displays for decision-making and practical implementation by 

relevant stakeholders. 

3.2 BERT Model 

BERT [22], developed by Google, is a pre-training language model that conducts unsupervised 

learning toward the universal representation of language from a large amount of text data and also a 

deep neural network model based on the Transformer architecture. The underlying principle of BERT 

is to utilize the encoder model of the Transformer to pre-train the model in an unsupervised manner, 

enabling the model to extract general language representations from piles of text data. These 

representations find utility across a spectrum of NLP tasks, encompassing text classification, named 

entity recognition, sentiment analysis, and beyond. Figure 2 illustrates the corresponding flow chart 

of BERT. 

The following equation can represent the basic principle of BERT: 

Where 𝑋 represents the input text data, and 𝐻 represents the output text representation. The 

BERT model encodes the input text data bidirectionally and transforms it into a universal language 

representation. 

The BERT model employs numerous encoder modules within Transformers, each comprising 

multiple self-attention mechanisms and fully connected layers. Inputting a textual sequence into the 

BERT model, each word is initially encoded as a word vector. Following subsequent processing, these 

word vectors serve as inputs to the BERT model. 

 H = 𝖡𝖤𝖱𝖳(X) (1) 
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Figure 2. Flow chart of the BERT model 

In the BERT model, each word vector is represented as a 𝑑 -dimensional vector, where 𝑖 

denotes the 𝑖-th word, and 𝑗 denotes the 𝑗-th element of the vector. Thus, the input to the BERT 

model can be represented as a d-dimensional matrix 𝑋 : 

Where 𝑛 represents the length of the input text sequence. 

The output of the BERT model yields a d-dimensional matrix denoted as 𝐻 , wherein each 

column represents the representation of a word within the input text sequence. This matrix 𝐻 can be 

expressed as follows: 

Where ℎ𝑖 Represents the vector representation of the 𝑖-th word in the input text sequence. 

In this approach, the BERT model processes text data related to sports events, effectively 

extracting key information and features from the text data. Processing this text data can help identify 

the focus and direction of sustainable improvements in sports events. The BERT model can process 

text data in two directions: forward and backwards. This bidirectional processing helps capture 

contextual information and semantic relationships within the text data, resulting in better 

representations. The role of the BERT-MHA-DNN model is to provide feature representations for 

MHA and DNN to process the text data. By using the BERT model, better representations of text data 

can be obtained, thereby improving the performance and accuracy of subsequent MHA and DNN 

models. 

3.3 MHA Model 

The MHA model[23] is a self-attention-based neural network model that processes data with 

correlations. In the process, the model[24] maps the input data to multiple different spaces, calculates 

attention weights in each space, and then combines these weights to obtain the final output. Since the 

 𝑋 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑛] ∈ ℝ𝑑×𝑛 (2) 

 𝐻 = [ℎ1, ℎ2, ⋯  , ℎ𝑛] ∈ ℝ𝑑×𝑛 (3) 
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MHA model[25] can capture the relationships and importance among the data related to sports events, 

such as energy consumption data and traffic emission data, and provide better feature representations 

for the subsequent DNN model, it is assigned the role of a data processor in the BERT-MHA-DNN 

model.   

The flow chart of MHA is shown in Figure 3: 

 

Figure 3. Flow chart of the MHA model 

The basic principle of the MHA model can be summarized in several steps: 

⚫ Mapping the input data, the MHA model maps the input data to multiple different spaces, 

each with a corresponding weight matrix; this allows the model to learn various feature 

representations, thereby improving the model’s generalization ability. 

⚫ Computing attention weights in each space, the MHA model computes attention weights for 

each input. The attention weights represent the correlations and importance between the 

input data. Attention weights are typically computed by calculating the similarity between 

input data through dot product or other methods, then normalizing the similarities to obtain 

attention weights. 

⚫ Weighted summation: the MHA model multiplies the input data by their corresponding 

attention weights and then performs a weighted summation to obtain the final output. This 

output comprehensively represents all input data, capturing their relationships and 

importance and providing better feature representations for subsequent models. 

The formula for the MHA model can be represented as: 

(Where 𝑋 represents the input data, ℎ𝑒𝑎𝑑𝑖 represents the attention output of the 𝑖-th head and 

𝑊𝑂 represents the output weights. ℎ  denotes the number of heads, and Concat denotes the 

concatenation operation for multi-head attention.) 

The MHA model takes as input a 𝑑 × 𝑛 matrix 𝑋, where 𝑑 denotes the dimensionality of the 

input data, and 𝑛 represents the number of input data points. This model then projects the input data 

into multiple distinct spaces associated with its respective weight matrix. 

The output of the MHA model is a 𝑑 × 𝑛 matrix, obtained by weighted summation through 

multi-head attention. In each head, the MHA model calculates the similarity between each pair of 

input data and transforms it into attention weights. These weights are used to perform a weighted 

summation of the input data, resulting in the output of each head. Finally, the MHA model 

 𝑀𝐻𝐴(𝑋) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ⋯ , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (4) 
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concatenates the outputs of each head to obtain the final output 

3.4 DNN Model 

The DNN model [26] is a neutral-network-based neural network machine learning model which 

can be used for classification, regression, and clustering tasks. In the BERT-MHA-DNN model, the 

role of the DNN (Deep Neural Network) model is to classify or predict the processed data. The DNN 

model processes and maps the input data through multiple layers of neural networks to generate the 

final output. Each layer in the neural network consists of several neurons, and each neuron receives 

input from the previous layer’s output. The neurons then perform computations using specific weights 

and activation functions to determine their outputs. Figure 4 below provides a flowchart illustrating 

the structure and workflow of the DNN model: 

 

Figure 4. Flow chart of the DNN model 

The DNN model typically includes the following essential components: 

⚫ The input layer facilitates the transmission of input data to the initial layer of the neural 

network. 

⚫ Hidden layers: The hidden layers serve as the central component of the DNN model, 

comprising multiple neurons. Each neuron within these layers accepts the output from the 

preceding layer as input and conducts computations utilizing specific weights and activation 

functions. The hidden layers can have multiple layers, and each layer can perform different 

transformations and mappings on the input data to extract higher-level features. 

⚫ Output layer: The output layer accepts the output of the last hidden layer and transforms it 

into scalar or vector form, representing the classification or prediction results for the input 

data. 

⚫ Activation functions: Activation functions are essential components in the DNN model. 

They are usually used in the hidden and output layers to introduce non-linear 

transformations. Commonly used activation functions include sigmoid, ReLU and tanh. 

The following equation can represent and define the following fundamental principle of the 

DNN model: 

Where 𝑥  denotes the input data, and 𝑦  represents the output result. The DNN model 

transforms the input data through multiple layers of transformations and mappings, converting it into 

better feature representations, and then uses an output layer to transform it into scalar or vector form 

 𝑦 = 𝐷𝑁𝑁(𝑥) (5) 
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as a result. 

The input to the DNN model is an 𝑛 -dimensional vector 𝑥  representing the data to be 

processed. The DNN model passes the input data to the first layer of the neural network and then 

performs transformations and mappings layer by layer to obtain the output result 𝑦. 

The output of the DNN model can be represented as: 

where 𝑊(𝐿+1) and 𝑏(𝐿+1) represent the weights and biases of the output layer, respectively, where 

𝐿 denotes the number of layers in the DNN model. 𝑎(𝐿) Represents the output vector of the 𝐿-th 

layer, which can be computed as: 

 

Where 𝑊(𝐿) and 𝑏(𝐿) represent the weights and biases of the L-th layer, respectively, and σ 

represents the activation function. 𝑎(0)represents the input layer’s output vector, usually equal to the 

input vector x. 

In the BERT-MHA-DNN model, the input to the DNN model is the data processed by the MHA 

model, which has been transformed into better feature representations. The output of the DNN model 

is a scalar or vector, representing the classification or prediction results for the input data. 

4. Results 

4.1 Datasets 

The following four datasets are selected in this study to discover strategies for sustainability 

assessment and improvement of large venue events under the principle of carbon neutrality: 

International Organization for Standardization dataset (ISO)[27] includes various CSR reports 

under ISO standards, such as ISO 26000 and ISO 14001. The dataset contains CSR reports of 

companies and other related information, such as company name, country and industry. 

Global Reporting Initiative (GRI)[28]: This dataset includes various sustainability reports under 

GRI standards, such as GRI Standards GRI G4. The dataset contains companies’ sustainability reports 

and related information, such as company name, country and industry. 

Carbon Disclosure Project (CDP)[29]: This dataset includes corporate disclosure information on 

climate change, such as greenhouse gas emissions and climate change risk assessment. The dataset 

contains disclosure information about companies and related information, such as company name, 

country, and industry. 

United Nations Framework Convention on Climate Change (UNFCCC)[30]: This dataset 

includes corporate climate change data, such as greenhouse gas emissions and clean energy usage. It 

also contains related information, including company names, countries, and industries. This 

comprehensive dataset provides valuable insights into the environmental practices of various 

companies across different regions and sectors. 

4.2 Experimental Details 

 𝑦 = 𝑊(𝐿+1)𝑎(𝐿) + 𝑏(𝐿+1) (6) 

 𝑎(𝐿) = 𝜎(𝑊(𝐿)𝑎(𝐿−1) + 𝑏(𝐿)) (7) 
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The paper adopts four datasets for training, and the training process unfolds as follows: 

Step 1: Data Processing 

The sustainability and climate change-related data are extracted from four datasets: ISO, GRI, 

CDP, and UNFCCC. These datasets encompass both companies’ financial and non-financial 

information. The data is partitioned into training, validation, and test sets, followed by data cleaning, 

imputation of missing values, standardization, and feature selection processes. 

Step 2: Model Training 

The model is first trained on the training set and then fine-tuned on the validation set to optimize 

hyperparameter configurations. In this experiment, we used cross-validation and grid search 

techniques to fine-tune the model’s hyperparameters and improve its performance. Specifically, we 

adjusted parameters like the learning rate of the BERT model, the number of heads in the MHA model, 

and the number of layers in the DNN model. 

We used 8 Transformer layers for the BERT model with 768 hidden units, a learning rate of 2e-

5, and a batch size of 32. In the MHA model, we employed eight heads and 64 hidden units, with a 

learning rate 1e-3 and a batch size of 64. For the DNN model, we utilized three hidden layers, each 

consisting of 128 neurons, with a learning rate 1e-3 and a batch size of 128. 

Step3: Model Evaluation 

The trained model is evaluated using the test set, incorporating various metrics such as Accuracy, 

Recall, F1 Score, Area Under the Curve (AUC), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE %), Root Mean Squared Error (RMSE), R-squared Score (R2 Score), and 

mean Average Precision (mAP). 

Step4: Result Analysis 

A comparative analysis of performance evaluation metrics between the BERT-MHA-DNN 

model and traditional models like logistic regression, decision trees, and random forest makes it 

evident that the BERT-MHA-DNN model surpasses the performance of other models. Additionally, 

scrutinizing the errors and uncertainties of the BERT-MHA-DNN s and samples reveals that its 

predictions are less susceptible to model across various categories to data quality and annotation 

errors. Moreover, examining the model’s generalization ability on new datasets or real-world 

scenarios employing techniques such as cross-validation underscores its consistent and reliable 

performance across different datasets and scenarios. 

1. Accuracy: 

 

In this context, TP represents the number of true positives, TN represents the number of true 

negatives, FP refers to the number of false positives, and FN refers to the number of false negatives. 

These metrics are fundamental in evaluating the performance of classification models, as they provide 

insights into the model’s accuracy, precision, recall, and overall effectiveness in distinguishing 

between classes. 

2. Recall: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(8) 
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In this context, TP represents the number of true positives, and FN represents the number of false 

negatives. These metrics are crucial in assessing the performance of binary classification models, 

particularly in accurately identifying positive instances (through TP) and ensuring that negative 

instances are not incorrectly classified as positive (through FN). They are key to understanding the 

model’s precision, recall, and ability to handle imbalanced datasets or critical classification tasks. 

3. F1 Score: 

4. AUC: 

Where ROC(x) represents the relationship between the true positive rate and the false positive 

rate when x is the threshold, this relationship is visualized through a Receiver Operating 

Characteristic (ROC) curve, a graphical representation commonly used to evaluate the performance 

of binary classification models. 

5. MAE: 

where 𝑦𝑖 represents the true value, 𝑦𝑖̂  represents the predicted value, and 𝑛 represents the 

number of samples. These variables are crucial in calculating various evaluation metrics, such as 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared Score (R2 Score), 

used to assess the performance of regression models. 

6. MAPE: 

7. RMSE: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(9) 

 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(10) 

 
𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑥)𝑑𝑥

1

0

 
(11) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ ∣ 𝑦𝑖 − 𝑦𝑖̂ ∣

𝑛

𝑖=1

 

(12) 

 

MAPE =
1

n
∑

∣ yi − yî ∣

yi
∗ 100%

n

i=1

 

(13) 

 

RMSE = √
1

n
∑(yi − ŷi)2

n

i=1

 

(14) 
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8. R2 Score: 

9. mAP: 

Where 𝑄 represents the set of queries and 𝐴𝑃(𝑞) represents the average precision of query 𝑞. 

10. Parameters(M): 

Calculate the number of adjustable parameters in the model, measured in millions. This count is 

significant for understanding the complexity and capacity of the model. 

11. Inference Time(ms): 

Determine the inference time of the model, measured in milliseconds. This metric is essential 

for assessing the efficiency and real-time applicability of the model in various applications. 

12. Flops(G): 

Calculate the number of floating-point operations (FLOPs) required for the model to execute 

inference, measured in billions. This metric provides insights into the model’s computational 

complexity and resource requirements during inference. 

13. Training Time(s): 

Quantify the training time of the model, expressed in seconds. This metric is pivotal for 

understanding the computational resources and efficiency needed to train the model effectively. 

4.3 Experimental Results and Analysis 

To evaluate the individual contributions of various components within the model to its overall 

performance, an ablation study was conducted across four distinct models: BERT-MHA, BERT-DNN, 

MHA-DNN, and the proposed model. The assessment used four datasets: ISO, GRI, CDP, and 

UNFCCC. The experimental results, including accuracy, recall, F1 score, and AIC (Akaike 

Information Criterion) metrics, are detailed in Table 1 and visualized in Figure 5. These results 

provide insights into how each component contributes to the model’s overall performance and the 

impact of different configurations on key evaluation metrics.  

 

Table 1. Visualization of the experimental results of ablation, including accuracy, recall, F1 score, and 

AIC metrics, for the BERT-MHA model, BERT-DNN model, MHA-DNN model, and our proposed 

model across the ISO, GRI, CDP, and UNFCCC datasets. 

Mod

el 

Datasets 

ISO dataset GRI dataset CDP dataset UNFCCC dataset 

 

𝑅2 𝑆𝑐𝑜𝑟𝑒 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̄)2𝑛

𝑖=1

 

(15) 

 

𝑚𝐴𝑃 =
1

∣ 𝑄 ∣
∑ 𝐴𝑃(𝑞)

∣𝑄∣

𝑞=1

 

(16) 
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BER

T-

DNN 

87.61 
85.5

4 

88.4

9 

83.9

7 
93.67 

84.0

9 

84.6

8 

87.2

6 
85.59 

86.5

9 

86.9

9 
87.6 86.14 

90.0

6 

89.3

7 

91.8

7 

BER

T-

MH

A 

94.92 
90.2

9 

87.7

4 

83.8

9 
92.06 

86.3

8 

90.4

8 

90.3

9 
90.41 

90.0

2 

84.1

6 

85.1

7 
95.6 

93.6

6 

84.6

4 

83.8

9 

MH

A-

DNN 

94.25 
90.0

4 

88.3

5 

86.3

2 
87.93 

86.5

9 

90.9

9 

87.1

2 
93.27 88 

86.9

1 

84.6

5 
92.92 

84.3

1 

90.2

7 

93.5

4 

Ours 96.29 
95.4

7 
94.7

9 
95.2

1 
96.74 

94.3
3 

94.2
4 

95.6
1 

96.57 
94.7

3 
92.9

1 
94.2

7 
97.44 

95.4
9 

93.2
7 

94.1
9 

    Accuracy is a metric that quantifies the proportion of correctly classified samples out of the total 

number of samples. It ranges from 0 to 100 percent, with higher scores indicating superior 

performance. Recall, also known as sensitivity, measures the proportion of true positives correctly 

identified by the model, ranging from 0 to 100 percent, where higher values represent better 

performance. The F1-Score represents the harmonic mean of precision and recall, accounting for false 

positives and false negatives and ranges from 0 to 1, with a higher score indicating better model 

balance. AUC (Area Under the Curve) is used to evaluate binary classification model performance 

based on the ROC (Receiver Operating Characteristic) curve, ranging from 0 to 1, where a higher 

AUC signifies better classification ability. 

The results show that the combination of BERT, MHA (Multi-Head Attention), and DNN (Deep 

Neural Network) in our proposed model is highly effective in capturing temporal dependencies within 

the data, leading to improved model performance. The study demonstrated the ablatio unsupervised 

pre-training strategy to be a key factor contributing to the model’s superior results. 

In contrast, the BERT-MHA model, which relies solely on self-attention mechanisms, performed the 

worst across all evaluation metrics, indicating that self-attention alone is insufficient. The BERT-

DNN and MHA-DNN models performed comparably to our proposed model on some metrics, but 

they overall outperformed, highlighting the benefit of the full integration of BERT, MHA, and DNN 

in the proposed model. 
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Figure 5. Visualization of experimental results for the ablation study, encompassing accuracy, recall, 

F1 score, and AIC metrics 

Table 2 and Figure 6 present the experimental results of MAE, MAPE (%), RMSE, and F1-Score 

metrics for seven different models, including our proposed model, on four datasets: ISO, GRI, CDP, 

and UNFCCC. 

Table 2. Experimental results of MAE metrics, MAPE(%) metrics, RMSE metrics and F1-Score 

metrics on the ISO, GRI, CDP, and UNFCCC datasets. 

Model 

Datasets 

ISO dataset GRI dataset CDP dataset UNFCCC dataset 

MA

E 

MAPE(

%) 

RM

SE 

F1 

Sco

re 

MA

E 

MAPE(

%) 

RM

SE 

F1 

Sco

re 

MA

E 

MAPE(

%) 

RM

SE 

F1 

Sco

re 

MA

E 

MAPE(

%) 

RM

SE 

F1 

Sco

re 

Gan and 

Zhang et 

al.[31] 

25.

63 
9.59 5.87 

0.7

9 

26.

35 
11.28 6.45 

0.8

8 

43.

29 
9.66 8.35 

0.8

6 

44.

93 
13.8 7.7 

0.8

8 

Komnino

s et 

al.[32] 

45.

33 
15.52 5.28 

0.8

6 

49.

05 
10.41 6.92 

0.7

8 

46.

24 
9.23 4.66 

0.8

5 

43.

63 
14.82 5.02 

0.7

8 

Elnour et 

al.[33] 

22.

6 
13.82 8.18 

0.8

7 

34.

85 
11.09 4.6 

0.7

8 

30.

2 
10.18 6.83 

0.7

8 

45.

57 
10.66 5.19 

0.7

7 

Zhang et 

al.[34] 

25.

23 
9.11 4.91 

0.8

1 

46.

26 
9.56 6.63 

0.7

6 

29.

82 
8.83 5.75 

0.8

3 

47.

77 
11.34 7.98 

0.7

7 
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Zhu et 

al.[35] 

47.
58 

9.56 4.83 0.8 
32.
98 

14.38 4.23 
0.7
7 

38.
21 

14.69 7.35 
0.8
7 

42.
58 

14.54 4.99 
0.8
3 

Lannelo

ngue et 

al.[36] 

50.

26 
14.6 4.25 

0.8

6 

32.

59 
9.64 5.1 

0.8

4 

42.

06 
11.81 5.09 

0.7

6 

44.

93 
10.83 7 

0.8

5 

Ours 
19.

63 
6.49 3.91 

0.9

2 

17.

32 
6.44 2.75 

0.9

4 

15.

24 
3.95 4.15 

0.9

2 

13.

32 
7.61 3.69 

0.9

5 

The models evaluated in this study include Gan and Zhang et al., Komninos et al., Elnour et al., 

Zhang et al., Zhu et al., Lannelongue et al., and our proposed model. MAE, or Mean Absolute Error, 

quantifies the average magnitude of errors in a set of predictions. MAPE (%), or Mean Absolute 

Percentage Error, gauges the average percentage difference between predicted and actual values. 

RMSE, or Root Mean Square Error, calculates the square root of the average squared differences 

between predicted and actual values. 

Among the tested models, our model performed the best in terms of MAE, RMSE, and F1-Score 

on all four datasets, though it did not achieve the best results in terms of MAPE (%). This overall 

performance proves its good generalizing ability across different datasets on most evaluation metrics, 

suggesting its adaptability to tasks and datasets beyond the ones used in this study. 

 

Figure 6. Visualization of experimental results for MAE metrics, MAPE(%), RMSE metrics, and 

F1-Score metrics. 

Table 3 and Figure 8 present the experimental results of Parameter, Inference, Flops, and 

Training time metrics for seven different models, including our proposed model, on four datasets. 
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Table 3. Experimental results of Parameter metrics, Inference time metrics, Flops metrics and 

Training time metrics on ISO dataset, GRI dataset, CDP dataset and UNFCCC dataset 

Metho

d 

Dataset 

ISO dataset GRI dataset CDP dataset UNFCCC dataset 

Paramet

ers(M) 

Infer

ence 

time 

(ms) 

Flop

s(G) 

Trai

ning 

time 

(s) 

Paramet

ers(M) 

Infer

ence 

time 

(ms) 

Flop

s(G) 

Trai

ning 

time 

(s) 

Paramet

ers(M) 

Infer

ence 

time 

(ms) 

Flop

s(G) 

Trai

ning 

time 

(s) 

Paramet

ers(M) 

Infer

ence 

time 

(ms) 

Flop

s(G) 

Trai

ning 

time 

(s) 

Lu et 

al. [37] 
604.42 16.51 7.68 

559.

73 
550.95 6.52 8.89 

528.

65 
518.64 5.24 9.49 

528.

86 
488.02 6.49 

10.0

8 

480.

24 

Perku

miene 

et 

al.[38] 

755.01 20.35 
12.6

3 

810.

45 
687.33 7.91 12 

666.

27 
670.06 8.18 

11.2

9 

688.

47 
740.8 8.9 

12.3

7 

703.

52 

Atalay 

et 

al.[39] 

393.24 21.58 9.22 
451.

63 
705.58 4.35 9.88 

425.

27 
696.83 6.1 6.86 

483.

4 
620.79 6.56 

11.1

1 

533.

45 

Xie et 

al.[40] 
683.27 21.29 

12.3

3 

773.

99 
593.53 7.58 

12.2

8 

605.

18 
706.99 7.3 

11.1

8 

666.

88 
680.48 7.04 

10.1

4 

737.

87 

Kang 

et 

al.[41] 

502.89 14.27 7.85 
441.

86 
390.57 4.87 8.33 

441.

05 
489.85 5.11 6.56 

424.

53 
458.01 5.2 6.79 

443.

87 

Yang 

and 

Shi et 

al.[42] 

338.42 9.94 5.33 
325.

61 
320.14 3.64 5.6 

335.

65 
338.76 3.55 5.33 

327.

06 
319.17 3.64 5.61 

336.

77 

Ours 263.74 6.49 5.07 
214.

85 
199.43 3.17 4.35 

219.

34 
231.34 2.34 4.33 

268.

45 
219.22 2.73 4.11 

234.

59 

The models examined in this study encompass Lu et al., Perkumiene et al., Atalay et al., Xie et 

al., Kang et al., Yang and Shi, and our proposed model. Parameter metrics denote the number of 

parameters utilized in the model. Inference time metrics gauge the time the model requires to predict 

the output for a given input. FLOP metrics quantify the number of floating-point operations necessary 

for a single forward pass by the model. Training time metrics measure the time the model trains on 

the provided dataset. 

Our model achieved the best results considering Parameter, Inference time, and Flops metrics 

on all four datasets and Training time metrics on three out of four datasets, except for the GRI dataset, 

where Xie et al. achieved the best result. 

Our model has a compact architecture with fewer parameters, less inference time, and fewer 

flops proven here. The relatively short training time suits applications requiring fast and efficient 

processing well. Our model utilizes a combination of convolutional and recurrent neural networks to 

extract features from the input data and capture temporal dependencies within the data. It also uses a 

novel combination of supervised and unsupervised learning techniques to improve its generalization 

of new data. 
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Figure 7. Visualization of experimental results for Parameter metrics, Inference time metrics, 

FLOPs metrics, and Training time metrics 

Table 4 and Figure 8 illustrate the experimental results of Accuracy metrics, R2 Score metrics, 

mAP metrics, and AUC metrics for seven distinct models, including our proposed model, across four 

datasets: ISO, GRI, CDP, and UNFCCC. 

Table 4. Experimental results for Accuracy metrics, R2 Score, mAP, and AUC metrics on the ISO, 

GRI, CDP, and UNFCCC datasets are presented below. 

Model 

Dataset 

ISO dataset GRI dataset CDP dataset UNFCCC dataset 

Accura

cy 

R2 

Sco

re 

mA

P 

AU

C 

Accura

cy 

R2 

Sco

re 

mA

P 

AU

C 

Accura

cy 

R2 

Sco

re 

mA

P 

AU

C 

Accura

cy 

R2 

Sco

re 

mA

P 

AU

C 

Lu et al. 92.44 
87.9

5 
90.8 90.4 93.29 92.8 88.7 

93.3

8 
88.19 85.2 

85.6

4 

85.6

9 
93.86 

84.5

6 

87.0

8 

85.9

5 

Perkumie

ne et al. 
92.88 

84.5

4 

91.2

2 

90.9

1 
92.67 

86.2

2 
89.6 

89.0

5 
89.24 

90.9

5 

85.6

8 

89.9

9 
89.14 

93.3

9 

90.9

7 

86.9

4 

Atalay et 

al. 
91.35 

87.4

9 
88.6 

91.3

5 
94.08 

91.6

2 

84.3

1 

92.3

6 
85.57 

90.9

4 
90.8 

89.4

4 
90.57 88.3 

84.7

7 

88.8

3 

Xie et al. 93.98 
85.2

9 

84.4

7 

91.6

6 
93.6 

86.2

7 

85.0

7 

90.6

5 
85.73 

88.7

5 

91.1

8 

91.8

2 
85.34 

85.0

4 

87.4

2 

91.6

7 

Kang et 

al. 
93.54 

90.9

8 

86.5

7 

92.0

4 
84.79 

87.2

7 
84.1 

92.2

3 
86.63 

90.4

3 

91.1

9 

87.2

9 
85.73 

92.2

6 

87.8

7 
91.1 

Yang and 

Shi et al. 
88.41 

86.6

2 

84.8

6 

89.0

8 
87.22 

86.0

9 

89.1

9 

84.6

9 
85.94 

83.9

8 

84.4

5 

85.8

2 
87.98 

89.8

3 

89.5

6 

91.9

3 

Ours 96.21 
94.5

7 

93.8

2 

95.3

9 
97.45 

93.6

4 

92.1

1 

94.2

5 
96.74 

95.4

1 

94.2

3 

97.0

6 
97.81 

96.7

2 

94.8

1 

94.3

1 
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This study compares our model with Lu et al., Perkumiene et al., Atalay et al., Xie et al., Kang 

et al., and Yang and Shi. Our proposed model outperformed all other models considering Accuracy, 

mAP, and AUC metrics across all four datasets. Additionally, it achieved the best results regarding 

R2 Score metrics on three out of four datasets, except for the UNFCCC dataset, where Kang et al. 

achieved the best result. 

The results indicate that our proposed model is operative in object detection and regression tasks 

and effectively achieves high accuracy, precision, and recall in binary classification tasks, as 

demonstrated by its high mAP and R2Score metrics. Our model utilizes a combination of 

convolutional and recurrent neural networks to extract features from the input data and capture 

temporal dependencies within the data. It also uses a novel combination of supervised and 

unsupervised learning techniques to improve its generalization of new data. 

  

Figure 8. Visualization of experimental results of Accuracy metrics, R2Score metrics, mAP metrics 

and AUC metrics 

5. Discussion and Conclusion 

In this article, we introduced a sophisticated design model that leverages the BERT-MHA-DNN 

framework, comprising three integral components: BERT for comprehensive text analysis, MHA for 

unveiling complex event data relationships, and DNN as an overarching platform for holistic 

modelling and predictive insights. Through a rigorous evaluation involving four distinct experiments 
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across various datasets and task contexts, we observed the exceptional performance of the BERT-

MHA-DNN framework across a broad spectrum of key metrics, including accuracy, recall, F1 score, 

MAE, MAPE, RMSE, R2 score, mAP, and AUC. This broad proficiency demonstrated the model’s 

versatility and robustness, positioning it as a high-performance solution for diverse analytical 

scenarios. This impressive performance validates its extensive applicability, highlighting its potential 

as a go-to choice for various analytical tasks. 

Nonetheless, it is crucial to acknowledge certain limitations uncovered during our experiments. 

One notable limitation is the model’s interpretability, as our study did not delve into this aspect. 

Additionally, the model displayed limited capability in handling imbalanced data, a common 

challenge in real-world scenarios. Future research endeavors should enhance the model’s 

interpretability and explore its performance on larger-scale datasets. Addressing these limitations will 

further elevate the model’s effectiveness and broaden its scope of applications. 

In conclusion, our research has introduced the BERT-MHA-DNN model. This powerful and 

versatile tool assesses event complexity and sustainability levels and formulates actionable 

improvement strategies for large-scale venue events. In contrast to traditional approaches, this model 

combines natural language processing and deep learning techniques to provide more accurate 

sustainability assessments. It is a cornerstone in promoting the sustainable development of large-scale 

events while advancing social and environmental sustainability goals. With its impressive 

performance and the potential for future enhancements, the BERT-MHA-DNN model stands as a 

valuable asset in event analysis and management, offering a promising avenue for improving the 

quality and sustainability of such events. 
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