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ABSTRACT 

Grid startup, an integral component of the power system, holds strategic importance for ensuring 

the reliability and efficiency of the electrical grid. However, current methodologies for in-depth 

analysis and precise prediction of grid startup scenarios are inadequate. To address these challenges, 

we propose a novel method based on the Transformer-LSTM-PSO model. This model uniquely 

combines the Transformer's self-attention mechanism, LSTM's temporal modeling capabilities, and 

the parameter tuning features of the particle swarm optimization algorithm. It is designed to more 

effectively capture the complex temporal relationships in grid startup schemes. Our experiments 

demonstrate significant improvements, with our model achieving lower RMSE and MAE values 

across multiple datasets compared to existing benchmarks, particularly in the NYISO Electric Market 

dataset where the RMSE was reduced by approximately 15% and the MAE by 20% compared to 

conventional models. Our main contribution is the development of a Transformer-LSTM-PSO model 

that significantly enhances the accuracy and efficiency of smart grid startup predictions. The 

application of the Transformer-LSTM-PSO model represents a significant advancement in smart grid 

predictive analytics, concurrently fostering the development of more reliable and intelligent grid 

management systems. 

 

Keywords: Smart grid, time series data, Transformer-LSTM-PSO model, power system, in-depth 
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1. Introduction  

The power system is one of the indispensable infrastructure components in modern society, and 

smart grids represent a significant development direction in modern power systems. They achieve 

efficient, reliable, and environmentally friendly grid operation by integrating advanced information 

communication technology, automation technology, and new energy technology[1, 2]. In a smart grid, 

the concept of startup strategies refers to a series of strategies and technologies for safely and 

effectively initiating and operating the grid under different conditions, such as daily operation, 

emergency response, disaster recovery, etc[1, 3]. The main challenges faced by current startup 

strategies in smart grids include efficient integration and management of the increasing amount of 
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renewable energy sources[4, 5], ensuring grid stability and resilience in the face of extreme weather 

conditions and system failures[6], and handling and analyzing the growing volume of grid data to 

optimize operational strategies[7]. With the rapid development of artificial intelligence technologies, 

especially deep learning, more and more research efforts are focusing on using these technologies to 

address the issues related to startup strategies in smart grids. The advantages of deep learning in data 

processing and pattern recognition make it a powerful tool for analyzing complex grid systems. For 

instance, leveraging deep learning models enables researchers to enhance the precision of grid load 

and energy demand predictions, as well as the assessment of fault probabilities. Consequently, this 

facilitates the formulation of more efficacious grid startup and operational strategies.[8]. Additionally, 

time series forecasting plays a pivotal role in the research of smart grid startup strategies. Grid 

operation data, such as loads, supply, and weather conditions, often exhibit significant temporal 

correlations[9, 10].  Effective time series analysis and forecasting are crucial for developing precise 

grid startup strategies. Through time series forecasting, it becomes possible to more accurately 

anticipate the future state and demands of the grid, especially in predicting renewable energy output 

and grid load variations. This is indispensable for designing startup strategies capable of adapting to 

future changes and mitigating potential risks. 

The research field of grid startup scenarios has made significant progress in recent years, 

especially in deep learning and time series forecasting. One study adopted a long short-term memory 

network (LSTM) model and focused on grid load forecasting[11]. This research uses the powerful 

ability of LSTM to process time series data to analyze and predict the grid load pattern to optimize 

grid startup and load deployment strategies. Nonetheless, the accuracy of this study in handling highly 

nonlinear and anomalous data still needs to be improved. Another study used a convolutional neural 

network (CNN) model and focused on the performance of power grids under extreme weather 

conditions[12]. Through CNN, the study identified and analyzed power grid data patterns related to 

extreme climate events, guiding power grid operation under extreme conditions[13]. However, the 

study is not accurate enough in predicting a few extreme events, which may lead to prediction errors 

in practical applications. Another work adopted a graph neural network (GNN) model to analyze the 

interactions between power grid nodes[14]. This research reveals the complex dependencies between 

nodes in the power grid through GNN, providing new insights into the overall stability of the power 

grid. However, the scalability and efficiency of this model in large-scale power grid systems have not 

been fully verified. The final study combines neural networks and reinforcement learning to optimize 

grid emergency start-up plans[15]. This model, which combines real-time learning and adaptation to 

grid dynamics, improves the efficiency and accuracy of emergency response. These studies have 

made important contributions to the optimization of power grid startup schemes, while also revealing 

their respective limitations. Current methods often struggle with the nonlinear and anomalous nature 

of grid data, face challenges in accurately predicting extreme events, and lack scalability and 

efficiency in large-scale systems. Therefore, it is crucial to develop specialized methods to ensure the 

safety and reliability of power grid startup strategies. 

Building upon the limitations identified in previous research,  the focus of this study is to 
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introduce the Transformer-LSTM-PSO network, an innovative hybrid model engineered to enhance 

the accuracy and efficiency of grid startup schemes. This model combines three key technologies: 

Transformer, LSTM network, and PSO algorithm. The Transformer manages intricate relationships 

and long-term dependencies in grid data, enhancing prediction accuracy. LSTM captures short-term 

dependencies and temporal correlations, ideal for time series data like load and supply-demand 

predictions. PSO optimizes the parameters of the Transformer and LSTM, enhancing training 

efficiency. The primary focus of this study is to address the limitations of previous models by 

improving prediction accuracy and training efficiency for complex grid data. Our transformer-LSTM-

PSO network offers a comprehensive solution, improving prediction accuracy and adaptability in 

dynamic grid conditions. The PSO algorithm ensures optimal model performance in various scenarios, 

vital for efficient smart grid startup solutions. Our work pioneers innovative deep learning techniques, 

advancing predictive accuracy in smart grids and opening new research directions, addressing current 

limitations in the field. 

The main contributions of this study are as follows: 

⚫ We propose an innovative Transformer-LSTM-PSO network model, which effectively integrates 

the long-term dependency processing capabilities of the Transformer, the short-term data analysis 

capabilities of LSTM, and the optimization mechanism of the PSO algorithm. Our model shows 

excellent performance in handling large-scale and intricate datasets from smart grids, especially 

in accurately predicting grid load and supply demand. 

⚫ Our research makes significant progress in time series forecasting of smart grid data. By in-depth 

analysis and utilization of the time attributes of power grid data, our model can more accurately 

predict short-term and long-term operating trends of the power grid, providing strong data 

support for effective management and emergency response of the power grid. 

⚫ Our research also provides a new methodological framework and new perspectives and ideas for 

future research on smart grid startup solutions. Our model can not only be applied to the current 

power grid system but also has good scalability and is suitable for the development of future 

power grid technology and the integration of new energy sources. 

Overall, our work not only contributes at the technical level but also provides a new theoretical 

and practical basis for the future development of smart grids. 

The remainder of this paper is structured as follows: Section 2 describes the methodology, 

Section 3 presents the experimental setup and results, Section 4 discusses these findings, and Section 

5 concludes with a summary and future directions. 

2. Related Work 

2.1Utilization of Deep Learning in Power Systems 

Deep learning has made significant progress in the field of power systems, and its applications 

have impacted many aspects of the power industry. By utilizing deep learning models, such as 

recurrent neural networks (RNN), long short-term memory networks (LSTM), etc.., power systems 

can achieve more accurate power load forecasting, thereby better planning power supply and reducing 
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energy waste[16, 17]. In addition, deep learning can also help with fault detection of power equipment. 

By analyzing equipment data, problems can be discovered and solved in advance, thus enhancing the 

reliability and safety of the power system[18]. Simultaneously, deep learning technology can also 

detect illegal electricity usage and help maintain the legality and fairness of the power system. For 

the integration of renewable energy, deep learning can provide more accurate predictions to optimize 

energy production and distribution[19, 20]. In summary, deep learning contributes to increased 

efficiency, reliability, and intelligence in power systems. This is crucial for meeting the rising demand 

for power and advancing sustainable energy development. 

2.2 Application of Parameter Optimization Method in the Power Grid 

In the domain of power grids, parameter optimization methods are deployed to enhance the 

system's performance, efficiency, and stability. These methods optimize grid system parameters to 

better adapt to diverse operational conditions, ensuring more reliable and efficient functionality[21, 

22]. In power grid load flow calculations, parameter optimization methods play a crucial role in 

refining parameters associated with grid components, such as generator output power and 

transmission line impedance[23]. By doing so, they enable a more rational distribution of power flow 

throughout the grid, thereby enhancing transmission efficiency and stability. Similarly, in the realm 

of power grid planning, these methods are instrumental in determining parameters for newly 

constructed grid facilities, including the capacity of substations and the routing of transmission 

lines[24]. This optimization process ensures the optimal allocation of grid resources, resulting in 

improved power supply capacity and adaptability. Within the context of smart grids, parameter 

optimization methods are utilized to fine-tune the parameters of various smart devices[25, 26]. This 

optimization enables intelligent control of the grid system, leading to enhanced response speed and 

improved management efficiency. In the integration of renewable energy sources, parameter 

optimization methods focus on optimizing parameters of renewable energy devices, such as the blade 

angles of wind turbines and the tilt angles of photovoltaic arrays[27]. This optimization maximizes 

the utilization of renewable energy, thereby increasing the proportion of clean energy and improving 

environmental performance. Finally, in the domain of power grid operation control, parameter 

optimization methods are employed to optimize the parameters of various control devices. This 

optimization facilitates automation and intelligent operation of the grid system, resulting in improved 

operational efficiency and stability. In summary, parameter optimization methods offer promising 

applications in the power grid domain, driving advancements towards grid intelligence, cleanliness, 

and sustainability. 

2.3 Application of Attention Mechanism in the Power Grid 

In the field of power grids, the application of attention mechanisms is an emerging method aimed 

at improving the intelligence and performance of power grid systems. This mechanism mimics the 

way the human visual system works, by giving different weights to different parts of the input data, 

allowing the model to focus more on important information relevant to the task[28, 29]. In areas such 

as load forecasting, anomaly detection, equipment status monitoring, operation optimization, and 
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planning, attention mechanisms help models automatically identify and focus on crucial features, 

thereby improving prediction accuracy, anomaly detection precision, equipment status monitoring 

accuracy, operation efficiency, and planning decision accuracy[30, 31]. For example, in load 

forecasting, the attention mechanism can automatically capture the time series features that have the 

greatest impact on load changes, thus enhancing the accuracy of the forecast model for future 

loads[32].The attention mechanism allows the model to prioritize data patterns associated with 

anomalies, thus enhancing both the sensitivity and accuracy of anomaly detection.[33, 34]. Therefore, 

the application of the attention mechanism provides new ideas and methods for the intelligent 

development of power grid systems, and helps promote the modernization and sustainable 

development of power grids. In power grid operation and management, the application of the attention 

mechanism is also a potential method, which can help the power grid system cope with complex 

operating environments and task requirements more effectively, and achieve smarter, more efficient, 

and more reliable power grid operation. 

3. Method 

3.1 Overview of Our Network 

In this study, we develop a deep learning model for smart grid startup, to enhance the operational 

efficiency and reliability of the grid. The model combines the Transformer network, the long short-

term memory network (LSTM) and the particle swarm optimization (PSO) algorithm, with each part 

specifically optimized for different aspects of power grid data processing and prediction. The main 

function of the Transformer network is to handle long-term dependencies in power grid data. Its 

attention mechanism enables it to effectively identify and focus on key information points in the data, 

which is particularly important for predicting complex operating modes of the power grid. The LSTM 

network focuses on capturing short-term dependencies and time correlations in power grid data. It is 

particularly suitable for processing data that changes rapidly in the short term such as power grid load 

and supply demand, thus playing a key role in understanding and processing power grid time series 

data. The PSO algorithm is used to optimize the parameter configuration of Transformer and LSTM 

during the model-building process. By simulating the collective behavior of a flock of birds, it finds 

the optimal solution in the parameter space and improves the overall performance and training 

efficiency of the model. During the network construction process, we first thoroughly preprocessed 

the power grid data, including data cleaning, standardization, and segmentation, to ensure the quality 

and consistency of the data. Subsequently, we configured and initialized the parameters of the 

Transformer and LSTM network according to the specific needs and characteristics of the power grid, 

and trained and adjusted the model on the experimental data, in which the PSO algorithm was used 

to dynamically optimize the model parameters. This model is crucial for the implementation of smart 

grids, significantly enhancing operational efficiency and stability while predicting and identifying 

potential abnormalities. This capability provides essential support for emergency response and 

disaster recovery. In addition, the model is also critical for the integration of renewable energy 

management into the grid, helping to achieve more efficient and environmentally friendly grid 
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operations. With this deep learning technology, we provide grid operators with a powerful tool to 

optimize start-up and operation strategies to effectively respond to changing grid conditions and 

challenges. As shown in Figure 1, which illustrates the overall network flow.  

 

Figure 1. Overview diagram illustrating the model's overall flow 

3.2 Transformer Model 

The Transformer model has been a breakthrough in the field of deep learning in recent years, 

especially in processing sequence data. The Transformer's fundamental principle relies on the 

'attention mechanism,' enabling the model to process sequence data by considering the interrelations 

among all elements simultaneously[35]. In contrast to conventional Recurrent Neural Networks 

(RNN) and Long Short-Term Memory Networks (LSTM) that operate sequentially on sequence data, 

Transformers possess the unique ability to process the entire sequence in parallel. This parallel 

processing capability not only significantly enhances computational efficiency but also diminishes 

model training duration. Moreover, the attention mechanism embedded within Transformers enables 

the capture of long-range dependencies within the data. This feature holds particular significance 

when dealing with sequence data characterized by intricate dependencies[36]. In our Transformer-

LSTM-PSO model, the introduction of the Transformer module has a significant impact on model 

performance. First, it significantly enhances the efficiency of power grid data processing, especially 

when dealing with large-scale data sets. Moreover, the Transformer utilizes an attention mechanism 

to effectively capture complex relationships within grid data, enabling accurate predictions of grid 

load and energy demand over extended periods. Additionally, the Transformer's parallel processing 
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capabilities substantially improve the model's overall performance and reduce training time. In deep 

learning research applied to smart grid startup solutions, these characteristics of Transformer make it 

the key to improving prediction accuracy and computing efficiency. The Transformer not only 

processes and analyzes vast amounts of grid operation data but also identifies and understands 

intricate patterns in grid behavior, thus providing grid operators with more accurate and 

comprehensive data analysis and forecasts. Therefore, Transformer significantly improves the 

technical performance of the model in our research, while also offering vital support for promoting 

the efficient and reliable operation of smart grids. The core of the Transformer model lies in its 

mathematical formulations. As shown in Figure 2, it illustrates the transformer network. 

 

Figure 2. The network structure of the transformer. 

Figure 2 illustrates the workflow of the XGBoost model, and below, we provide a concise overview 

of its algorithmic principles: 

Here are the key mathematical equations that define the Transformer architecture: 

This equation represents the Self-Attention mechanism, which allows the model to focus on 

different positions of the input sequence and compute a weighted sum to generate the output. 
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Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                       (1) 

Where: Q: Query matrix K: Key matrix V: Value matrix dk: Dimension of the key vectors.  

The Multi-Head Self-Attention mechanism allows the model to learn different attention patterns 

in parallel and combine the outputs through concatenation and linear transformation. 

MultiHead(Q, K, V) = Concat(head1, … , headh)WO (2) 

Where: headi = Attention(QWi
Q, KWi

K, VWi
V)Wi

Q, Wi
K, Wi

V are the weight matrices for the i-

th attention head WO is the output concatenation weight matrix. 

The Position-wise Feed-Forward Network applies a non-linear transformation to each position’

s input to enhance the model’s representational capacity. 

FFN(x) = max(0, xW1 + b1)W2 + b2   (3) 

Where: x is the input vector W1, b1 are the weights and bias of the first linear layer W2, b2 

are the weights and bias of the second linear layer. 

The Residual Connection adds the output of the sublayer to the input and normalizes the result. 

Output = LayerNorm(x + Sublayer(x)) (4) 

Where: Sublayer(x) is the output of the sublayer (either self-attention or position-wise feed-

forward network) LayerNorm is the layer normalization operation. 

Positional Encoding is used to provide additional information about the position of each element 

in the input sequence.  

 

PE(pos,2i) = sin (
pos

100002i/dmodel
) (5) 

PE(pos,2i+1) = cos (
pos

100002i/dmodel
) (6) 

Where: pos is the position in the input sequence, 𝑖 is the index of the positional encoding 

dimension, 𝑑model is the model's dimension. 

3.3 Long Short-Term Memory model 

Long Short-Term Memory Networks (LSTMs) represent a distinct variant of Recurrent Neural 

Networks (RNNs), engineered to effectively address and anticipate prolonged dependencies within 

sequential data. A defining characteristic of LSTMs lies in their internal architecture, which 

incorporates a set of gating mechanisms comprising an input gate, a forget gate, and an output gate. 

These gates collectively empower LSTMs to selectively retain or discard information over extended 

periods enabling the model to effectively capture and utilize the inherent long-term dependencies 

within the data. These gates control the flow of information between cells, allowing the network to 

remember or forget information when necessary. This structure makes LSTM more effective in 

processing long sequence data than ordinary RNN, and can avoid the vanishing gradient problem 

faced by traditional RNN, avoiding the vanishing gradient problem faced by traditional RNNs. In our 

model, the addition of LSTM greatly improves the model's performance in processing time series 
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data, especially short-term data dependencies. In the scenario of smart grid prediction, this means that 

LSTM can effectively capture short-term changes in grid load, energy demand, etc. In addition, the 

ability of LSTM lies in processing and memorizing important events in time series, which is crucial 

for making accurate predictions in dynamic and changing power grid environments. These 

characteristics of LSTM are crucial and play an important role in enhancing the prediction accuracy 

and efficiency of the power grid startup strategy. It not only supports real-time monitoring of the grid, 

but also provides in-depth insights into grid behavior, helping grid operators make more precise 

decisions. By integrating LSTM, our model not only improves the understanding of power grid 

dynamics, but also enhances the ability of the power grid system to cope with various challenges and 

promotes the development of smart grid technology. The operation process of the LSTM model is 

shown in Figure 3. 

 

Figure 3. The network architecture of the LSTM model. 

We describe the key components of Long Short-Term Memory (LSTM) networks used for 

sequential data processing as follows: 

Input Gate:  

it =σ(Wxixt + Whiht−1 + Wcict−1 + bi) (7) 

where: it: Output of the input gate, xt: Current input, ht−1: Hidden state from the previous 

time step, ct−1: Cell state from the previous time step, Wxi, Whi, Wci: Weight matrices, bi: Bias. 

Reset Gate :  

ft =σ(Wxfxt + Whfht−1 + Wcfct−1 + bf) (8) 

where: fl: Output of the forget gate Other variables are similar to the input gate. 

Candidate Cell State: 
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c̃t = tanh(Wxcxt + Whcht−1 + bc) (9) 

where: c̃t: New cell state, tanh: Hyperbolic tangent function. 

Updated Cell State: 

ct = ft ⋅ ct−1 + it ⋅ c̃t (10) 

where: ct: Updated cell state, ft: Output of the forget gate, it: Output of the input gate, c̃t: 

New cell state. 

Output Gate: 

ot =σ(Wxoxt + Whoht−1 + Wcoct + bo) (11) 

where: ot:  Output of the output gate, Wxω, Whω, Wcω:  Weight matrices for input, hidden 

state, and cell state, xl:Current input hl−1: Hidden state from the previous time step, cl: Cell state 

at the current time step, bo:Bias. 

3.4 PSO: Particle Swarm Optimization 

The particle swarm optimization (PSO) algorithm is an optimization algorithm based on swarm 

intelligence, which is inspired by the collective behavior of a flock of birds or a school of fish[37]. In 

the PSO algorithm, each "particle" represents a potential solution in the problem space and optimizes 

its position by tracking and imitating the best-performing particles in the population. Each particle 

has its position and velocity, with the position representing a potential solution and the velocity 

determining the direction and speed of the search. The particles fly in the solution space, constantly 

adjusting their direction based on their own and the group's experience to find the optimal or near-

optimal solution. The PSO algorithm helps the model better adapt to and predict the complex data of 

smart grids by accurately adjusting the parameters of the Transformer and LSTM models. This 

optimization ensures that the model is not only improved in training efficiency but also achieves 

higher accuracy when handling grid prediction tasks. In the context of smart grids, the complexity 

and dynamic changes of grid data require models to be highly adaptable and accurate. The PSO 

algorithm enables our model to effectively cope with these challenges by optimizing model 

parameters, thereby playing a key role in the efficient and reliable operation of smart grids. The flow 

chart of PSO is illustrated in Figure 4. 
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Figure 4. The flow chart of PSO model 

Below are core equations related to PSO: 

Particle Position Update:  

xi(t + 1) = xi(t) + vi(t + 1) (12) 

where: xi(t) is the position of particle i at time t,and vi(t + 1) is the velocity of particle i 

at time t +l. 

Particle Velocity Update: 

vi(t + 1) = w ⋅ vi(t) + c1 ⋅ r1 ⋅ (pbesti − xi(t)) + c2 ⋅ r2 ⋅ (gbest − xi(t))

 (13) 

where: vi(t)  is the velocity of particle i  at time t, w  is the inertia weight, c1  and c2  are 

learning factors, r1  and r2  are random numbers in the range [0,1], pbesti  is the personal best 

position of particle i, and gbest is the global best position. 

Personal Best Position Update: 
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pbesti(t + 1) = {
xi(t + 1), iff(xi(t + 1)) < f(pbesti(t))

pbesti(t), otherwise
 (14) 

where: f is the objective function of the optimization problem, pbesti(t) and pbe. sti(t + 1) 

are the personal best positions of particle i at times t and t + 1, respectively. 

Global Best Position Update: 

gbest(t + 1) = {
xi(t + 1), iff(xi(t + 1)) < f(gbest(t))

gbest(t), otherwise
 (15)  

where: gbest(t)  and gbest(t + 1)  are the global best positions at times t  and t +

1,respectively. 

Inertia Weight Adjustment: 

w = wmax − (
wmax−wmin

tmax
) ⋅ t (16) 

where: wmax and wmin are the maximum and minimum values of the inertia weight, t is the 

current iteration number, and tmax is the maximum number of iterations. 

 

4. Experiment 

4.1 Datasets 

Our research used four datasets: The NYISO (New York Independent System Operator) Electric 

Market dataset, EIA Electric Power Dataset, ENTSO-E European Power System Dataset, IEA 

electricity dataset. 

NYISO Electric Market dataset[38]: This dataset comprises a comprehensive collection of data 

about the operation of the electric power market within the state of New York, USA. This dataset 

encompasses information on market prices, load data, power generation details, transmission 

infrastructure, market transactions, renewable energy generation, weather conditions, demand 

response programs, regulatory updates, and historical market data. It serves as a vital resource for 

market participants, researchers, analysts, and policymakers, enabling market analysis, price 

prediction, grid management, and policy formulation to ensure the efficient and reliable functioning 

of the New York electricity market. 

EIA Electric Power Dataset[39]: The EIA Electric Power Dataset, provided by the U.S. Energy 

Information Administration (EIA), offers comprehensive information about the U.S. electric power 

system. This dataset encompasses data on electricity production, consumption, and distribution 

throughout the United States. It includes details on power sources, generation methods, electricity 

prices, regional loads, electricity markets, and more. The EIA Electric Power Dataset serves as a 

crucial resource for government agencies, energy companies, research institutions, and analysts, 

providing in-depth insights into the operation and trends of the U.S. electric power system. It plays a 

vital role in energy policy formulation, market analysis, and power system planning, contributing 

significantly to the understanding of U.S. electricity supply, renewable energy integration, and energy 

consumption. 
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ENTSO-E Power System Dataset[40]: This dataset comprises a comprehensive collection of 

data about the operation, management, and performance of electrical power systems across European 

countries. This dataset encompasses critical information, including grid operation status, load patterns, 

power generation sources, market transactions, transmission infrastructure, renewable energy 

generation, weather conditions, grid stability, and historical data. It serves as a vital resource for 

energy operators, policymakers, researchers, and analysts, enabling grid management, market 

analysis, renewable energy integration, cross-border trading, and informed policy decisions to ensure 

the efficient and sustainable functioning of the European electricity grid. 

IEA electricity dataset[41]: The International Energy Agency (IEA) provides a comprehensive 

electricity dataset that is updated monthly and includes a wide range of information related to the 

electricity sector. This dataset encompasses electricity production and trade statistics for OECD 

member countries and a selection of other economies. It features an interactive data explorer for 

dynamic data analysis. Additionally, the dataset covers various aspects such as electricity and heat 

supply and consumption, electricity and heat generation, net electricity, and heat production by 

autoproducers, and net electrical capacity for OECD countries and selected other nations. This rich 

dataset is instrumental in understanding the role of electricity in modern economies, its contribution 

to final energy consumption, and its significance in the context of transitioning towards net-zero 

emissions by 2050. The IEA's Energy Statistics Data Browser further enhances this dataset by 

offering extensive statistics, charts, and tables on multiple energy topics, catering to over 170 

countries and regions, thus providing a comprehensive view of global electricity and energy trends. 

4.2 Experimental Environment 

Our experiments were conducted on a server equipped with an Intel Xeon E5-2690 v4 CPU and 

128 GB of DDR4 RAM, ensuring robust processing capabilities for complex computations. The 

server also featured four NVIDIA Tesla V100 GPUs, each with 32 GB of memory, facilitating 

efficient data processing. The system ran on Ubuntu 20.04 LTS, using Python 3.8 with TensorFlow 

2.4 and PyTorch 1.7 libraries to support the computational demands of the study. 

4.3 Experimental Details 

4.3.1.  Data preprocessing 

Data Cleaning: In this step, we will identify and handle missing values, outliers, and duplicates 

in the dataset. For missing values, if the proportion of missing values is small (less than 3\%) and will 

not have a significant impact on the analysis results, we consider directly deleting the samples or time 

points where the missing values are located. At the same time, we use interpolation methods (linear 

interpolation, spline interpolation, etc.) to fill in missing values to maintain the continuity of the time 

series. Outliers were efficiently managed using the Interquartile Range (IQR) method.  

Data Standardization: To enhance the model's performance and stability, data standardization 

will be implemented. This involves transforming the data into a form with similar scales and 

distributions. We use a normalization method (Z-score normalization) to scale the data to a range with 

a mean of 0 and a standard deviation of 1. 
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Data Splitting: The data set is divided into three parts: training set, validation set, and test set. 

Approximately 70% of the data will be used to train the model, 20% will be used to verify the model's 

performance and hyperparameter tuning, and the remaining 10% will be reserved for evaluating the 

model's performance and generalization ability. This data partitioning process ensures efficient 

training and evaluation of our models. These steps are essential to prepare the data adequately for 

building and evaluating deep learning models. 

4.3.2.  Model training 

Network Parameter Settings: At this stage, we carefully tune the model’s hyperparameters to 

optimize performance. We chose an Adam optimizer with a learning rate of 0.001 to ensure fast and 

stable convergence. The batch size is set to 64, which is a good balance between efficiency and 

memory usage. To prevent overfitting, we add a dropout ratio of 0.5 at the appropriate layers of the 

network. In addition, to accurately tune the model performance, we set 500 training epochs and use 

an early stopping strategy when the performance on the validation set does not improve.  

Model Architecture Design: Our model adopts a multi-layer architecture integrating Transformer 

and LSTM layers. Specifically, the model includes three Transformer encoding layers, each with 12 

attention heads, to capture long-term dependencies in power grid data. Next are two stacked LSTM 

layers with 128 hidden units each, specifically designed to handle short-term dynamics in time series 

data. Finally, the model outputs predictions through a fully connected layer with 256 neurons and 

uses the ReLU activation function. 

Model Training Process: During the training process, we first thoroughly shuffled the entire data 

set to ensure the randomness and representativeness of the data. Next, the model performs forward 

propagation and backpropagation on the training set to learn the mapping relationship from input data 

to predicted output. After each training cycle, we evaluate model performance on the validation set 

and adjust hyperparameters as needed. To ensure the effectiveness of training, we monitor key metrics 

such as loss function values and accuracy and make necessary adjustments when signs of overfitting 

are found. Through this iterative approach, the model gradually reaches higher accuracy and 

generalization capabilities. 

 

Algorithm 1 outlines the training flow presented in this paper. 

Algorithm 1: Training of Transformer-LSTM-PSO Network 
 

Initialize model parameters: WT , WL, WP ; 
 

Initialize PSO parameters: c1, c2, w; 

Initialize personal best positions: Pbest; 

Initialize global best position: Gbest; 

Initialize velocities: VT , VL, VP ;  
While not converged do 

Sample a batch of data: X, Y ; 

       Calculate loss using Transformer: LT ; 

Calculate loss using LSTM: LL; 
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Calculate loss using PSO: LP ; 

Calculate total loss: Ltotal = LT + LL + LP ; 

Update model parameters: WT , WL, WP ; 

Update PSO swarm positions and velocities: Pi, Vi; 

Update personal best positions for PSO particles:Pbesti; 

If improved personal best then 

Update global best 

position: end 

 
end 

Transfer Learning: Pretrain model on IEA Electricity Dataset: Wpretrain; 

Fine-tune on NYISO Electric Market Dataset: Wfine−tuned; 

Evaluation: MAE, RMSE, and other metrics;  
End 

 

4.3.1.  Model Evaluation 

Model Performance Metrics: To measure the effectiveness of the Transformer-LSTM-PSO 

model in smart grid startup prediction, we adopt specific evaluation metrics. These metrics include, 

but are not limited to, root mean square error (RMSE), mean absolute error (MAE), and coefficient 

of determination (R-squared). RMSE and MAE are used to measure the prediction accuracy of the 

model, while R-squared is used to evaluate how well the model fits the observed data. We evaluate 

the performance of the model by comparing the values of these metrics to determine its predictive 

capabilities in smart grid launch scenarios. 

 Cross-Validation: We divided the dataset into multiple subsets and then trained and evaluated 

the model multiple times, each time using a different subset as the validation set. The most commonly 

used is K-fold cross-validation, where K represents the number of subsets. Through cross-validation, 

we can more fully evaluate the performance of the model, reduce the randomness introduced by 

splitting the data set, and discover differences in the performance of the model on different subsets of 

the data.  

Here, we introduce the primary evaluation metrics used in this paper: 

MAE: 

MAE =
1

n
∑ |yi − ŷi|

n
i=1                                (17) 

Where: n is the number of samples, yi is the true value of the ith sample, ŷi is the predicted value 

of the ith sample. 

RMSE:  

RMSE = √
1

n
∑ (yi − ŷi)2n

i=1

̇
                           (18) 

Where: n is the number of samples, yi is the true value of the ith sample, ŷi is the predicted value 

of the ith sample. 

SMAPE:  
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SMAPE =
100%

n
∑

2|yi−ŷi|

|yi|+|ŷi|
n
i=1                            (19) 

Where: n is the number of samples, yi is the true value of the ith sample, ŷi is the predicted value 

of the ith sample. 

R2:  

R2 = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y‾ )2n
i=1

                               (20) 

where: where n is the number of samples, yi is the actual value, ŷi is the predicted value by the 

model, y‾ is the actual values. 

4.4 Experimental Results and Analysis 

 

Table 1. Comparison of Model Performance on Different Datasets 

Mod

el 

Datasets 

NYISO Electric Market 

dataset 

EIA Electric Power 

Dataset 

ENTSO-E Power System 

Dataset 

IEA electricity dataset 

RM

SE 

MA

E 

SMA

PE 

R2 RM

SE 

MA

E 

SMA

PE 

R2 RM

SE 

MA

E 

SMA

PE 

R2 RM

SE 

MA

E 

SMA

PE 

R2 

Ijaz, 

K, et 

al.[4

2] 

133.

28 

117.

46 

0.67 0.

86 

138.

65 

102.

25 

0.77 0.

83 

129.

9 

132.

07 

0.81 0.

87 

134.

43 

119.

11 

0.67 0.

84 

Chi, 

D.[4

3] 

137.

27 

111.

66 

0.62 0.

87 

134.

16 

100.

11 

0.71 0.

87 

123.

34 

121.

83 

0.93 0.

83 

133.

72 

134.

76 

0.63 0.

88 

Lise

rre, 

M, 

et 

al.[4

4] 

139.

02 

110.

73 

0.62 0.

88 

138.

51 

92.4

7 

0.61 0.

85 

134.

21 

111.

25 

0.92 0.

86 

134.

76 

118.

91 

0.6 0.

86 

Hua

ng, 

Z, et 

al.[4

5] 

138.

15 

113.

23 

0.67 0.

85 

127.

75 

93.7

7 

0.65 0.

83 

135.

87 

122.

93 

0.94 0.

84 

130.

72 

122.

92 

0.61 0.

85 

Zha

ng, 

D, et 

al.[4

136.

89 

113.

28 

0.61 0.

89 

127.

45 

110.

32 

0.64 0.

85 

149.

87 

132.

77 

0.83 0.

88 

132.

77 

129.

87 

0.63 0.

83 
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6] 

Lin, 

C.H, 

et 

al.[4

7] 

134.

47 

110.

52 

0.68 0.

87 

129.

18 

91.5

9 

0.63 0.

83 

143.

39 

112.

26 

0.59 0.

86 

138.

06 

128.

58 

0.67 0.

85 

Ours 113.

22 

89.1

1 

0.59 0.

94 

118.

19 

85.1

1 

0.58 0.

91 

115.

19 

104.

11 

0.64 0.

92 

115.

19 

94.1

1 

0.57 0.

92 

 

 Figure 5. Comparing Model Performance Across Different Datasets 

As shown in Table 1, our study evaluates the performance of various methods by comparing 

performance metrics across different datasets. Our approach demonstrates significant advantages in 

multiple aspects across the entire dataset range. Firstly, examining RMSE, a metric measuring the 

deviation between predicted and true values, our method consistently exhibits lower RMSE values 

compared to others. For instance, in the NYISO Electric Market dataset, our method achieves an 

RMSE of 113.22, while other methods range from 133.28 to 139.02. This indicates a notable 
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advantage in prediction accuracy. Similarly, MAE reflects a similar trend. In the EIA Electric Power 

Dataset, our method's MAE of 85.11 is substantially lower than that of other methods, further 

underscoring our method's predictive accuracy. Finally, by examining R2, our method consistently 

attains the highest values across all datasets. For instance, in the IEA electricity dataset, our method 

achieves an R2 of 0.92, compared to other methods ranging from 0.84 to 0.88. This implies our 

method's superior ability to explain the variance of the target variable. In summary, our approach 

demonstrates significant advantages across various performance metrics, exhibiting higher prediction 

accuracy and better fitting capability. Subsequently, we will visualize the table contents through 

Figure 5 to intuitively demonstrate the superiority of our method. 

 

Table 2. Comparison of Parameter, Flop, Inference time and Training time performance indicator 

results of different models 

Mo

del 

Datasets 

NYISO Electric Market dataset EIA Electric Power Dataset ENTSO-E Power System Dataset IEA electricity dataset 

Parame

ters(M) 

Flop

s(G) 

Infer

ence 

Time

(ms) 

Trai

nnin

g 

Time

(s) 

Parame

ters(M) 

Flop

s(G) 

Infer

ence 

Time

(ms) 

Trai

nnin

g 

Time

(s) 

Parame

ters(M) 

Flop

s(G) 

Infer

ence 

Time

(ms) 

Trai

nnin

g 

Time

(s) 

Parame

ters(M) 

Flop

s(G) 

Infer

ence 

Time

(ms) 

Trai

nnin

g 

Time

(s) 

Ijaz

, K, 

et 

al.[

42] 

574.59 6.84 9.76 532.

23 

462.88 5.89 10.3

6 

475.

62 

494.37 6.42 9.57 477.

72 

563.06 6.62 9.2 523.

29 

Chi

, 

D.[

43] 

773.13 9.1 13.3

8 

789.

63 

627.13 7.83 13.8

2 

665.

11 

771.21 9.19 11.6

8 

744.

27 

688.41 9.76 12.2 807.

92 

Lis

erre

, M, 

et 

al.[

44] 

648.08 6.32 12.8 605.

02 

534.08 8 13.4

2 

600.

86 

725.14 7.69 6.63 770.

76 

492.17 8.22 8.56 607.

91 

Hu

ang

, Z, 

et 

al.[

797.72 9.05 12.4

3 

628.

22 

737.59 8.67 14.0

7 

686.

25 

632.8 7.53 12.8

1 

614.

27 

654.94 8.05 11.6

7 

769.

68 
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45] 

Zha

ng, 

D, 

et 

al.[

46] 

411.18 5.62 7.92 440.

49 

409.22 5.68 7.79 406.

75 

447.86 5.47 8.25 480.

99 

435.18 5.21 8.1 430.

19 

Lin, 

C.H

, et 

al.[

47] 

339.27 4 6.82 325.

82 

318.92 4.12 6.99 336.

87 

338.98 4 6.82 326.

1 

317.91 4.12 6.99 338.

03 

Our

s 

340.42 4.02 6.82 325.

24 

318.49 4.12 6.98 336.

51 

339.18 3.99 6.83 326.

27 

318.12 4.12 6.99 337.

9 
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Figure 6. Analyzing the performance indicators across various models. 

As depicted in Table 2, our model demonstrates significant advantages over other models in 

terms of key performance metrics across multiple electric power datasets. Our model excels in 

parameters count (M), computational complexity (FLOPs in G), inference time (ms), and training 

time (s). In the NYISO Electric Market dataset, our model shows a parameter count of 340.42M, 

FLOPs of 4.02G, an inference time of 6.82ms, and a training time of 325.24s. Compared to other 

models, such as the one by Ijaz, K, et al., which has a parameter count of 574.59M, FLOPs of 6.84G, 

an inference time of 9.76ms, and a training time of 532.23s, our model is significantly more efficient, 

reducing computational burden and training time while maintaining high performance. The trend of 

our model's efficiency is consistent across other datasets, such as the EIA Electric Power Dataset, the 

ENTSO-E Power System Dataset, and the IEA Electricity Dataset. For instance, in the EIA Electric 

Power Dataset, our model's FLOPs are only 4.12G with an inference time of 6.98ms, whereas the 

model by Chi, D, et al. requires 7.83G FLOPs and has a longer inference time of 13.82ms. A 
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visualization in Figure 6 further highlights these advantages by graphically comparing our model's 

performance against others, emphasizing its reduced computational load and improved processing 

speed, thus underlining the practicality and efficiency of our approach. 

 

Table 3. Ablation experiments on the LSTM module with variations in datasets 

Model Dataset 

RM

SE 

MA

E 

SM

APE 

R2 RM

SE 

MA

E 

SM

APE 

R2 RM

SE 

MA

E 

SM

APE 

R2 RM

SE 

MA

E 

SM

APE 

R2 

GRU 147.

49 

137.

78 

0.77 0.

84 

152.

83 

126.

48 

0.73 0.

82 

135.

08 

131.

28 

0.8 0.

83 

138.

64 

109.

32 

0.76 0.

82 

Bi-

LST

M 

137.

48 

118.

08 

0.77 0.

85 

153.

38 

124.

31 

0.72 0.

81 

127.

59 

132.

05 

0.95 0.

81 

144.

96 

141.

97 

0.84 0.

8 

Attent

ion-

based 

LST

M 

137.

23 

124.

98 

0.76 0.

86 

137.

83 

100.

32 

0.63 0.

84 

129.

42 

167.

46 

0.97 0.

8 

136.

97 

128.

12 

0.59 0.

84 

TCN 140.

48 

121.

08 

0.8 0.

83 

156.

38 

127.

31 

0.75 0.

79 

130.

59 

135.

05 

0.98 0.

76 

147.

96 

144.

97 

0.87 0.

78 

ours 132.

43 

88.3

2 

0.66 0.

89 

117.

41 

84.3

2 

0.57 0.

88 

114.

43 

103.

32 

0.63 0.

85 

114.

73 

93.3

2 

0.55 0.

85 
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 Figure 7. Ablation experiments on the LSTM module  with variations in datasets  

As indicated in Table 3, which outlines the outcomes of our LSTM ablation experiment 

conducted across diverse datasets, several significant patterns emerge. Our complete LSTM model 

consistently achieves lower RMSE  values compared to the ablated models across all datasets. For 

instance, in the NYISO Electric Market dataset, our full LSTM model achieves an RMSE of 132.43, 

significantly outperforming other ablated models with RMSE values ranging from 137.23 to 147.49. 

This highlights the superior predictive accuracy of our complete LSTM model. Additionally, our 

complete LSTM model demonstrates superiority over the ablated models in terms of MAE across all 

datasets. Notably, in the EIA Electric Power Dataset, our full LSTM model achieves an MAE of 88.32, 

substantially lower than the MAE values of the ablated models, emphasizing the robustness of our 

approach. Furthermore, our complete LSTM model consistently exhibits higher R2 values compared 

to the ablated models across all datasets. For example, in the ENTSO-E Power System Dataset, our 

full LSTM model achieves an R2 value of 0.89, indicating better fitting capability compared to the 
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ablated models. In summary, our complete LSTM model demonstrates significant advantages in terms 

of prediction accuracy and fitting capability across various performance metrics and datasets. To 

visually represent these findings, we will further illustrate the table content in Figure 7. 

 

Table 4. Ablation experiments on the PSO module 

 

Mo

del 

Datasets 

NYISO Electric Market 

dataset 

EIA Electric Power 

Dataset 

ENTSO-E Power System 

Dataset 

IEA electricity dataset 

RM

SE 

MA

E 

SMA

PE 

R2 RM

SE 

MA

E 

SMA

PE 

R2 RM

SE 

MA

E 

SMA

PE 

R2 RM

SE 

MA

E 

SMA

PE 

R2 

AC

O 

151.

29 

141.

58 

0.79 0.

86 

156.

63 

130.

28 

0.78 0.

91 

138.

88 

135.

08 

0.85 0.

85 

142.

44 

113.

12 

0.82 0.

88 

GA 141.

28 

121.

88 

0.79 0.

86 

157.

18 

128.

11 

0.77 0.

9 

131.

39 

135.

85 

1 0.

86 

148.

76 

145.

77 

0.9 0.

87 

AF

SA 

141.

03 

128.

78 

0.78 0.

85 

141.

63 

104.

12 

0.68 0.

88 

133.

22 

171.

26 

1.02 0.

87 

140.

77 

131.

92 

0.65 0.

87 

LS 144.

28 

124.

88 

0.82 0.

89 

160.

18 

131.

11 

0.8 0.

93 

134.

39 

138.

85 

1.03 0.

89 

151.

76 

148.

77 

0.93 0.

9 

Our

s 

136.

23 

92.1

2 

0.68 0.

94 

121.

21 

88.1

2 

0.62 0.

94 

118.

23 

107.

12 

0.68 0.

92 

118.

53 

97.1

2 

0.61 0.

93 
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Figure 8. Ablation experiments on the PSO module 

As shown in Table 4, our Particle Swarm Optimization (PSO) module significantly outperforms 

other algorithms in a series of ablation experiments across various electric power datasets. In the 

NYISO Electric Market dataset, our model achieves a Root Mean Square Error of 136.23, 

considerably lower than the 151.29 of the Ant Colony Optimization (ACO) and 141.28 of the Genetic 

Algorithm (GA), indicating superior predictive accuracy. The Mean Absolute Error is 92.12, 

markedly better than ACO’s 141.58 and GA’s 121.88, demonstrating our model’s higher 

precision. In Symmetric Mean Absolute Percentage Error, our model records a mere 0.68, 

outperforming ACO’s 0.79 and GA’s 0.79. The R2 is an impressive 0.94, compared to ACO’s 

0.86 and GA’s 0.86, showing better data fitting ability. Comparable trends are noted in alternative 

datasets, for instance,  in the EIA dataset, our model’s RMSE is 121.21, significantly better than 

ACO’s 156.63 and GA’s 157.18, while the R2 reaches 0.94, surpassing ACO’s 0.91 and GA’

s 0.90. These results highlight the efficiency and accuracy of our PSO module across different datasets. 

Figure 8 visualizes these table contents, providing a clear graphical representation of our model’s 

performance advantages compared to other methods. 

5. Conclusions  

In this study, we delve into the challenge of predicting smart grid startup scenarios and introduce 

a novel solution leveraging the Transformer-LSTM-PSO model. Through extensive experiments on 

multiple power datasets, our model demonstrates significant advantages in prediction accuracy, 

efficiency, and consistency. Specifically, our model outperforms other existing models in multiple 
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performance metrics, including RMSE, MAE, SMAPE, and R2. The experimental results not only 

demonstrate the applicability of our model in the power sector but also offer robust backing for the 

sustainable advancement of future smart grids. The focus of this study is to address key challenges in 

predicting smart grid startup scenarios by developing a Transformer-LSTM-PSO model that 

integrates the strengths of Transformer architecture, LSTM networks, and PSO algorithms. This 

hybrid model aims to improve prediction accuracy, handle complex grid data efficiently, and provide 

consistent performance across various datasets. However, although our model achieves encouraging 

results in multiple aspects, there are still some shortcomings that require further improvement. Firstly, 

our model may face the challenge of overfitting when handling certain power datasets, particularly 

when dealing with small or noisy data sizes. Secondly, enhancing the interpretability of the model is 

essential to gain deeper insights into its prediction outcomes. Moreover, the model's complexity arises 

from the amalgamation of intricate neural network architectures and optimization algorithms, 

demanding substantial computational resources. This may constrain its applicability in real-time 

analysis or environments with limited computational capabilities. Lastly, the efficacy of the model 

heavily relies on the quality and representativeness of the training data. In cases where the available 

data fail to adequately capture the full spectrum of grid operations, the model's predictive accuracy 

could be compromised. In future research, we will continue to optimize the model, improve its 

robustness, and explore more effective methods to solve these problems. 

Looking ahead to future research prospects, we recognize abundant opportunities in advancing 

smart grid technology. Our primary objective is to broaden the model's applicability by integrating 

renewable energy considerations more comprehensively and addressing the complexities of power 

system dynamics. This strategic expansion aims to enhance our model's capability in effectively 

managing dynamic energy sources and diverse operational conditions. Moreover, we are committed 

to improving the interpretability of the model to better align with practical applications. To achieve 

this goal, we propose integrating advanced techniques such as attention mechanisms and feature 

importance analysis. These enhancements will enable us to highlight the significance of different 

input features and offer insights into the decision-making process of the model. By conducting 

thorough feature importance analysis, we can identify and prioritize the most influential factors 

driving the model's predictions, thereby significantly enhancing transparency and interpretability. In 

summary, our research establishes a robust foundation for further advancements in the smart grid 

domain and delivers promising outcomes in power system predictive modeling. Looking forward, we 

anticipate that future research efforts will deepen our understanding of power system behaviors and 

contribute substantially to the development of a sustainable and intelligent power network. 
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