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ABSTRACT 

In the pursuit of sustainable development and climate change mitigation, achieving carbon 

neutrality is a critical goal. This requires balancing energy production with environmental protection, 

particularly as nations strive to reduce carbon emissions while promoting economic growth. In this 

context, the accuracy of time-series forecasting related to energy becomes increasingly significant. 

However, the path to carbon neutrality is fraught with challenges, including volatile energy markets, 

data integrity concerns, and the complexity of simulating economic indicators alongside emission 

data.To address these challenges, this study introduces a novel forecasting approach that integrates 

Quantum Particle Swarm Optimization (QPSO), Bidirectional Long Short-Term Memory networks 

(BiLSTM), and an attention mechanism. Our method enhances predictive analysis capabilities for 

energy consumption, production, and economic impacts, demonstrating its substantial value in the 

field of energy economics. Following extensive training and validation, our model significantly 

outperforms existing models in time-series forecasting, achieving an accuracy of 97.39% on the 

National Renewable Energy Laboratory (NREL) dataset, which captures renewable energy patterns, 

and 97.58% on the Energy Information Administration (EIA) dataset, representing broader energy 

economic trends. Furthermore, it attains 95.61% accuracy on the European Environment Agency 

(EEA) dataset and 97.33% accuracy on the Global Carbon Project (GCP) dataset, both of which are 

critical for environmental and economic planning. The combination of QPSO, BiLSTM, and the 

attention mechanism enables the model to adapt to the dynamic nature of energy markets and 

economic indicators, providing a detailed understanding of carbon emission trajectories. The 

reliability and high accuracy of our model offer valuable decision support to policymakers and 

stakeholders in the energy sector, facilitating the formulation of carbon neutrality strategies that are 

both economically viable and environmentally sustainable. Our research results offer compelling 

evidence for the adoption of advanced analytical techniques in energy economics, aiming to enhance 

carbon neutrality policy-making and ultimately contribute to a more sustainable future. 

Keywords: Carbon Neutrality, Artificial Intelligence, Decision Support, Sustainable Development, 

Energy economics,QPSO, BiLSM 
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1. Introduction 

Carbon neutrality is an urgent global priority aimed at reducing or offsetting greenhouse gas 

emissions from human activities to combat climate change[1]. At the heart of this concept is the goal 

of achieving a balance between emissions and their absorption, thereby limiting the excessive release 

of greenhouse gases, particularly carbon dioxide, into the atmosphere. This effort is essential for 

slowing the rise in global temperatures[2]. However, the path to carbon neutrality faces several 

significant challenges. First, the high cost of implementing advanced technologies hinders the 

widespread adoption of carbon-neutral solutions. Additionally, some existing approaches to achieving 

carbon neutrality may have unintended environmental consequences, such as changes in land use or 

increased energy demands, which require careful management to avoid negative outcomes. Finally, 

regulatory barriers and difficulties in fostering international cooperation remain substantial obstacles 

to the realization of global carbon neutrality goals. 

Artificial Intelligence (AI) holds tremendous potential in addressing the challenges of carbon 

neutrality[3]. AI can be used to monitor and optimize carbon neutrality projects, improving efficiency, 

reducing costs, and mitigating environmental risks[4]. It can analyze vast amounts of data, provide 

real-time information, and assist decision-makers in better understanding and managing the outcomes 

of carbon neutrality projects. AI can also optimize energy systems, enhance energy utilization 

efficiency, and reduce greenhouse gas emissions. However, accurate decision analysis heavily relies 

on time-series analysis techniques within the field of artificial intelligence, which can provide 

improved climate change predictions and carbon neutrality effects[5]. Specifically, time-series 

analysis can help identify trends, seasonal variations, and anomalies, allowing for a more precise 

assessment of the impacts of carbon neutrality projects. Below, we introduce recent methods and 

optimizations regarding the application of time-series analysis in decision-support systems for carbon 

neutrality: 

The adoption of the Prophet model involves utilizing Facebook’s developed Prophet time series 

forecasting model, which excels in analyzing trends and seasonality in time series data. It accurately 

predicts changes in greenhouse gas concentrations in the atmosphere by considering daily and weekly 

seasonality, as well as special holiday events and other factors. The advantage of the Prophet model 

lies in its user-friendliness and automation, making it suitable for users from various fields[6]. The 

Prophet model demonstrates outstanding performance in predicting greenhouse gas concentrations, 

with a root mean square error (RMSE) of 0.05 and a mean absolute error (MAE) of 0.03, confirming 

its highly accurate forecasting capability[7]. However, in certain situations, the Prophet model may 

have limitations. It may perform poorly when dealing with complex time series data and capturing 

nonlinear relationships within the data. Furthermore, the Prophet model offers relatively low 

interpretability, making it less suitable for applications that require a deeper understanding of the 

reasons behind predictions. 

Another study employed Long Short-Term Memory (LSTM) neural networks, a type of deep 

learning model suitable for handling long-term dependencies in time series data. This study used the 

LSTM model to predict greenhouse gas emissions in an energy system, achieving remarkable results 
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with an RMSE of 0.08 and an MAE of 0.06, highlighting its outstanding performance in capturing 

complex time series patterns. The LSTM model excels at capturing complex patterns in time series 

data, thereby enhancing prediction accuracy. However, LSTM models also face certain challenges. 

They may exhibit instability when dealing with small datasets and require substantial computational 

resources for training[8]. Additionally, interpreting the predictions from LSTM models can be 

challenging, potentially limiting their feasibility in certain applications. 

Next is the utilization of the XGBoost algorithm, which is a gradient boosting machine learning 

model used to predict carbon emissions in urban transportation. Researchers improved the XGBoost 

model by optimizing model hyperparameters and introducing more feature engineering, resulting in 

more accurate predictions[9]. This approach has made significant advancements in enhancing 

prediction performance, providing robust support for the effective management of carbon-neutral 

projects. However, the XGBoost model still requires careful selection and optimization of feature 

engineering, which may necessitate domain knowledge and expertise in certain cases. Additionally, 

the XGBoost model can be sensitive to outliers and noise, requiring more extensive data 

preprocessing efforts to enhance its robustness[10]. 

In the context of carbon neutrality time series forecasting, the Transformer model has 

demonstrated outstanding capabilities. Compared to traditional time series models, the Transformer 

model possesses a superior ability to handle long-range dependencies, which is crucial for capturing 

complex trends and seasonal variations in climate data[11]. The Transformer model leverages its self-

attention mechanism to simultaneously consider information from different time steps within a 

sequence, thereby gaining a better understanding of the inherent relationships within time series data. 

It is not limited to univariate time series forecasting but can also handle multivariate time series, such 

as considering multiple meteorological factors like temperature, humidity, wind speed, and more, to 

make more accurate predictions of carbon emissions[12]. The model has achieved a 5% improvement 

in prediction accuracy compared to traditional models when dealing with long-term dependencies in 

climate data, highlighting its significant advantage in capturing complex trends and seasonal 

variations[13]. However, despite its numerous advantages in time series forecasting, the Transformer 

model does come with some challenges. Firstly, in comparison to traditional time series models, the 

Transformer model typically requires more computational resources and larger datasets, which may 

pose cost challenges in certain situations. Secondly, meticulous tuning of model hyperparameters is 

required to ensure optimal performance across different carbon neutrality tasks[14]. Lastly, in contrast 

to other time series models, the Transformer model may necessitate more data preprocessing efforts 

in specific scenarios to handle outliers, missing data, and imbalanced data distributions effectively. 

In response to the limitations of existing models, we propose a novel approach: the QPSO-

BiLSTM model, enhanced with an attention mechanism. This innovative model addresses the 

shortcomings of current methods by offering more accurate predictions for carbon neutrality time-

series data. Specifically, the QPSO-BiLSTM model integrates Quantum Particle Swarm Optimization 

(QPSO) with Bidirectional Long Short-Term Memory (BiLSTM) neural networks. What 

distinguishes this model is its unique use of QPSO for optimizing hyperparameters and model weights, 
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significantly improving performance. QPSO, as a heuristic algorithm, excels at exploring 

hyperparameter spaces to identify optimal configurations, thereby maximizing the model’s predictive 

capabilities. In addition to the optimization achieved through QPSO, we incorporate an attention 

mechanism to enhance the model's ability to process time-series data. This mechanism allows the 

model to assign varying attention weights to different time steps, improving its capacity to capture 

important patterns and features within the data. As a result, the model not only becomes more 

interpretable but also adapts more effectively to diverse carbon neutrality datasets. Compared to 

previous models, the QPSO-BiLSTM model offers several key advantages. First, QPSO enables the 

model to identify more precise parameter configurations, leading to superior predictive performance. 

Second, the attention mechanism equips the model to better handle variations and trends across 

different time series, enhancing its generalization ability. Additionally, the attention mechanism 

improves interpretability, giving users clearer insights into the model's decision-making process and 

the rationale behind its predictions. 

In conclusion, our contributions are as follows: 

(1) The QPSO-BILSTM model, using Quantum Particle Swarm Optimization (QPSO) and an 

attention mechanism, improves time series forecasting accuracy. QPSO optimizes 

hyperparameters, capturing data patterns. The attention mechanism focuses on key time 

steps, enhancing predictions. 

(2) The attention mechanism in the QPSO-BILSTM model improves its adaptability to diverse 

time series datasets, enhancing its generalization for various carbon neutrality tasks. This is 

vital as different regions show unique climate and emission patterns. This versatility makes 

the model applicable across numerous scenarios. 

(3) The attention mechanism in the QPSO-BILSTM model enhances its interpretability, helping 

users understand the decision-making process and the rationale behind its predictions. This 

clarity is crucial for policymakers and environmental scientists who need to assess the 

impact of carbon neutrality measures for strategic planning. 

2. Related Work 

Recent research in energy forecasting and carbon neutrality has increasingly focused on applying 

advanced computational techniques to address the complexities of managing energy systems while 

complying with environmental policies[7]. A significant trend is the integration of sophisticated 

machine learning models to enhance prediction accuracy in energy consumption and production. For 

example, a study by Zhang et al. (2022) showcased a hybrid model that combines Convolutional 

Neural Networks (CNNs) with Recurrent Neural Networks (RNNs). This model significantly 

improved upon traditional forecasting methods by adeptly adapting to fluctuations in energy demand 

with high temporal granularity.Moreover, other studies have focused on integrating renewable energy 

sources into the grid, which is crucial for achieving carbon neutrality. Smith et al. (2023) developed 

a model using Deep Learning and Bayesian Optimization techniques to optimize the placement and 

operation of wind turbines, which resulted in a 15% increase in efficiency and reliability in power 

generation[10].Additionally, the application of Quantum Computing in energy forecasting has also 
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gained attention. Jones and Kumar (2023) applied Quantum Machine Learning algorithms to predict 

energy market trends and achieved remarkable accuracy, highlighting the potential for quantum 

technologies to revolutionize energy economics[12].These studies exemplify the progressive efforts 

being made to leverage cutting-edge technologies to enhance energy forecasting accuracy and 

sustainability in pursuit of carbon neutrality. The integration of these technological advances supports 

the development of strategies that are both economically viable and environmentally sustainable, 

providing robust decision support for policymakers and stakeholders in the energy sector. 

3. Method 

In this section, we will provide a detailed explanation of our method’s principles. Firstly, we will 

introduce the overall network architecture. Secondly, we will delve into the principles of QPSO and 

BILSTM. Finally, we will discuss the attention mechanism. 

3.1 Overview of Our Network 

Our approach, the QPSO-BiLSTM model combined with an Attention Mechanism, represents 

an innovative solution for enhancing the efficiency of carbon neutrality decision support systems. In 

developing this model, we collect and prepare various time series data related to carbon neutrality, 

including atmospheric greenhouse gas concentrations, meteorological data, energy consumption data, 

and more. These datasets undergo processes such as cleaning, standardization, and feature 

engineering to ensure the model can effectively utilize them. The model incorporates Quantum 

Particle Swarm Optimization (QPSO) to optimize hyperparameters and model weights, significantly 

enhancing its overall performance. 

After constructing the model, it needs to be trained and its performance validated. This involves 

splitting the dataset into a training set and a validation set, then using the training set to train the 

model and the validation set to assess its performance. Once the training is complete, the model can 

be deployed into the carbon neutrality decision support system. System users can use this model for 

time series forecasting, gaining insights into future carbon emissions trends, and making 

corresponding decisions. The application and optimization of the QPSO-BILSTM-ATTENTION 

model are expected to enhance the efficiency of carbon neutrality decision support systems, providing 

powerful tools and methods for better-addressing climate change and implementing carbon neutrality 

measures. As shown in Figure 1, the overall architecture of our network is presented. 
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Figure 1. Overall flow chart of the model. 

 

3.2 QPSO Model 

The QPSO (Quantum Particle Swarm Optimization) algorithm is an evolutionary algorithm 

based on particle swarm optimization, inspired by principles from quantum mechanics[15]. 

Compared to traditional particle swarm optimization algorithms, it introduces concepts such as 

probability distribution and quantum states, enabling it to excel in both global and local search 

capabilities. The QPSO algorithm plays a significant role in optimizing time series data for several 

reasons. Firstly, due to the often complex patterns and trends present in time series data, traditional 

optimization algorithms may become trapped in local optima. The QPSO algorithm, by incorporating 

quantum concepts, is better equipped to perform global searches, uncovering hidden patterns and 

trends within time series data[16]. Secondly, in time series prediction models, the selection of 

hyperparameters, such as learning rates and weights, is crucial for performance. The QPSO algorithm 

can be applied to optimize these model hyperparameters, leading to improved prediction accuracy. 

Furthermore, time series data often exhibit long-term dependencies, where past observations 

influence future trends. The QPSO algorithm aids in capturing these long-term dependencies, thereby 

enhancing prediction performance. Figure 2 illustrates the network diagram of BILSTM. 

The application of the QPSO algorithm in time series optimization is of paramount importance 

for the success of this experiment. It contributes to improved model performance, accelerates the 

experimental process, and provides a powerful optimization tool for the development of carbon 

neutrality decision support systems. Below, we will introduce the principles of the QPSO algorithm. 

Particle Position Update Rule: 

1 1t t t

i i iX X V+ += +                          [Formular 1] 

Where Xt+1 represents the position of particle i at time step t + 1, Xt represents the position of 
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particle i at time step t, and V t+1 represents the velocity of particle i at time step t + 1. 

Particle Velocity Update Rule: 

1

1 1 2 2( ) ( )t t t t

i i i i iV V c r Pbest X c r Gbest X+ =  +   − +   −         [Formular 2] 

Where ω is the inertia weight, c1 and c2 are learning factors, r1 and r2 are random numbers, 

Pbesti represents the personal best position of particle i, and Gbest represents the global best 

position. 

Calculation of Quantum Probability Distribution: 

1
1

1 1

1

| |
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| |

t
t i

i N
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i j

j
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P x
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+
+

+ +

=

−
=

−
                    [Formular 3] 

Where 𝑃𝑖
𝑡+1represents the quantum probability distribution of particle i at time step t + 1 

for position x, and N represents the number of particles. 

Update Rule for Quantum States: 

1
1 1 1
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 
            [Formular 4] 

Where𝑄𝑖
𝑡+1(𝑥) represents the quantum state of particle i at time step t + 1 for position x, 

and N represents the number of particles. 

Probability Distribution Weight for Position Updates: 

1
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Where 𝑊𝑖
𝑡+1(𝑥) represents the probability distribution weight of particle i at time step 

t+1 for position x, and N represents the number of particles. 

Expected Value for New Positions: 

1 1 1

1

( ) ( )
N

t t t

i j j

j

E x W x X+ + +

=

=                    [Formular 6] 

Where 𝐸𝑖
𝑡+1(𝑥) represents the expected value for position x of particle i at time step t+1. 

New Position Update Rule: 

1 1( )t t

i iX E x+ +=                         [Formular 7] 

This equation represents the update rule for new positions, where the expected values 

calculated using quantum probability distribution weights are used to update particle positions. 
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Figure 2. Flow chart of the QPSO model. 

3.3 BILSTM Model 

BILSTM (Bidirectional Long Short-Term Memory) is a variant of deep learning recurrent 

neural networks (RNNs) designed for handling time series data[8]. Unlike traditional RNNs, 

BILSTM introduces a bidirectional structure, enabling it to simultaneously consider both past 

and future information within time sequences[17]. It employs Long Short-Term Memory 

(LSTM) units, which possess strong memory and modeling capabilities, making them suitable 

for capturing long-term dependencies in time series data. 

The BILSTM algorithm significantly enhances time series optimization. It addresses the 

long-term dependencies characteristic of time series data, where past events influence future 

trends. BILSTM leverages LSTM units to capture these dependencies effectively, boosting 

model performance. Additionally, its bidirectional nature allows it to analyze past and future 

data concurrently, providing a holistic understanding of patterns and trends, which improves 

prediction accuracy. BILSTM also automates feature extraction from the data, eliminating the 

need for manual feature engineering and simplifying the modeling process while improving 

generalization. 

In summary, the application of the BILSTM algorithm in time series optimization is of 
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significant importance for this experiment. It contributes to improved model performance, 

simplifies the modeling process, and provides crucial technical support for the successful 

implementation of the carbon neutrality decision support system. Figure 3 illustrates the network 

diagram of BILSTM. 

3.4 Self-Attention Model 

Self-Attention[18], also known as the self-attention mechanism, is a widely used technique in 

the field of deep learning. It is primarily employed to process sequential data, such as natural language 

text or time series data. The core idea behind Self-Attention is to establish relationships between each 

element in a sequence and other elements to capture their importance and dependencies. This 

mechanism allows the model to dynamically assign different weights to elements at different 

positions, thereby better capturing critical information within the sequence. Self-Attention plays a 

crucial role in time series optimization as well. 

Firstly, time series data typically contains complex internal dependencies, where past 

observations influence future trends. Self-Attention helps the model capture these dependencies, 

leading to a more accurate modeling of the dynamic nature of time series data. Secondly, time series 

data can have varying lengths, but the Self-Attention mechanism is applicable to sequences of varying 

lengths since it does not rely on fixed window sizes or memory lengths. This flexibility allows it to 

handle time series data of diverse lengths, enhancing the model’s adaptability. Additionally, Self-

Attention enables the model to consider all elements in the sequence when generating output, not just 

those within a fixed window[19]. This aids in a more comprehensive understanding of various 

patterns and trends in the time series, improving prediction accuracy. As shown in Figure 4, the 

network diagram illustrates the Self-Attention mechanism. 

In summary, the Self-Attention algorithm plays a significant role in time series optimization. It 

enhances model performance, accommodates sequences of varying lengths, and facilitates a better 

understanding of critical information within time series data. These aspects are crucial for the success 

of the current experiment. Next, we will introduce the key concept of Self-Attention. 

Self-Attention Score (Scaled Dot-Product):  

Attention( , , ) softmax
T

k

QK
Q K V V

d

 
=  

 
 

              [Formular 8] 

Where: Attention(Q, K, V ) is the attention output. Q is the query matrix. K is the key matrix. V 

is the value matrix. dk is the dimension of the key vectors. softmax is the softmax activation function. 

Scaled Dot-Product Attention: 

Attention( , , )
T

k

QK
Q K V

d
=                    [Formular 9] 

Multi-Head Attention: 

1 2MultiHead( , , ) Concat(head ,head , ,head ) O

hQ K V W=         [Formular 10] 
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Position-wise Feed-Forward Networks: 

1 1 2 2FFN( ) ReLU( )x xW b W b= + +                  [Formular 11] 

Layer Normalization: 

LayerNorm( )
x

x




−
=                      [Formular 12] 

 

Figure 3. Flow chart of the BILSTM model. 

 

Figure 4. Flow chart of the Attention model. 
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4. Experiment 

4.1 Datasets 

To comprehensively validate our model, this experiment utilizes four distinct datasets: NREL, 

EIA, EEA, and GCP (Global Carbon Project). 

NREL Dataset[20]: This dataset is sourced from the National Renewable Energy Laboratory 

(NREL) and contains critical information related to renewable energy sources, such as solar and wind 

energy production, which plays a significant role in understanding carbon emissions and 

sustainability. 

EIA Dataset[21]: The Energy Information Administration (EIA) dataset is a valuable resource 

for energy-related data. It includes data on energy consumption, production, and emissions, providing 

insights into energy trends and their environmental impact. 

EEA Dataset[22]: The European Environment Agency (EEA) dataset is a comprehensive source 

of environmental data for European countries. It covers a wide range of environmental factors, 

including greenhouse gas emissions and air quality, contributing to our understanding of regional and 

global environmental dynamics. 

GCP Dataset[23]: The Global Carbon Project dataset, provided by the Global Carbon Project, is 

a globally recognized resource for carbon emissions data. It offers insights into carbon emissions at 

both regional and global scales, facilitating the assessment of progress towards carbon reduction goals. 

By incorporating these diverse datasets into our experiment, we aim to ensure the robustness and 

effectiveness of our model in handling various types of time series data related to carbon emissions 

and environmental factors. This multi-dataset approach enhances the reliability and applicability of 

our QPSO- BILSTM Combined with Attention Mechanism model, ultimately contributing to more 

accurate carbon neutrality predictions and informed decision-making within the context of carbon 

reduction strategies. 

4.2 Experimental Details 

My experimental configuration includes: Processor, Intel i7-13650 CPU; Graphics Card, 

NVIDIA GTX 4090; Memory, 64 GB. The software setup includes Computing architecture CUDA 

11.7; GPU acceleration library, CUDNN 10.0; Deep learning framework, Pytorch. 

Step1:Data preprocessing 

We will perform data preprocessing to ensure that the data is suitable for model training and 

evaluation. This includes the following steps: 

⚫ Collect NREL, EIA, EEA, and GCP datasets containing time series data related to carbon 

emissions and environmental factors. 

⚫ Data Cleaning: Clean the data by handling missing values, outliers, and duplicate data to 

ensure data quality and consistency. 

⚫ Data Standardization: Standardize the data to bring the values of different datasets to a 

consistent scale for model training. 

⚫ Data Splitting: Divide the dataset into a training set, a validation set, and a test set. We will 
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use 70% of the data for training, 20% for validating the model’s performance, and the final 

10% for the ultimate model evaluation. 

Step2:Model training 

We will provide a detailed explanation of the model training process, including specific 

hyperparameter settings, model architecture design, and training strategies. 

⚫ Network Parameter Settings: We have chosen an initial learning rate of 0.001 to ensure the 

stability of the training process. During training, we will employ a learning rate decay 

strategy, reducing the learning rate to half of its previous value every 10 training epochs to 

aid in model convergence. The batch size will be set to 64, which is a reasonable value that 

efficiently utilizes computational resources without causing memory issues. The total 

number of training epochs for the model is set to 200, which depends on the model’s 

complexity and the dataset size. At the end of each epoch, we will evaluate the model’s 

performance and its performance on the validation set. These hyperparameter combinations 

have all been stabilized through multiple iterations of the QPSO algorithm and represent 

the optimal configuration for our model. 

⚫ Model Architecture Design: We employed a validated variant of QPSO, which included 20 

particles and a maximum iteration limit of 100. We set candidate ranges for five 

hyperparameters to be optimized. The candidate ranges were set as follows: the number of 

layers for BILSTM was in the range of [1, 6]; the candidate range for the feature dimension 

of BILSTM hidden layers was [1, 512]; the candidate range for the learning rate was [0.05, 

0.0005]; the candidate range for dropout rate was [0, 1]; and the candidate range for the 

number of training epochs was [1, 200]. After 10 rounds of results demonstration, we 

determined the final optimal model structure. We utilized a two-layer BILSTM structure, 

with each layer consisting of 128 hidden units. The learning rate was set to 0.001, and the 

dropout rate was 0.3. Additionally, we employed three attention heads to adequately 

consider crucial information in the time series data. The attention mechanism was used for 

time series modeling, assisting the model in gaining a better understanding of the structure 

of sequential data. 

⚫ Model Training Process: We utilize the Adam optimizer with dynamically adjusting learning 

rates during training. The optimizer also incorporates appropriate weight decay to prevent 

overfitting. At the end of each training epoch, we evaluate the model’s performance on the 

validation set, measuring predictive accuracy using metrics such as RMSE. If the validation 

performance ceases to improve or shows signs of overfitting, we promptly halt training to 

avoid unnecessary computational expenses. Throughout the training process, we record 

both training and validation losses and monitor these metrics using visualization tools. This 

aids in understanding the model’s training progress and performance trends. To prevent 

issues like gradient explosion or vanishing gradients, we can also employ gradient clipping 

techniques in the BILSTM layers to limit the gradient’s magnitude and maintain training 

stability. With the above hyperparameter settings and model training strategies, we ensure 
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that the model effectively learns and extracts crucial information from time series data while 

mitigating overfitting issues. This training process provides a robust foundation for 

subsequent model evaluation and result analysis. 

Step3:Model Evaluation 

⚫ Model Performance Metrics: Use appropriate performance metrics such as Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), etc., to assess the accuracy and 

predictive capability of the model. 

⚫ Validation Set Evaluation: Apply the model to the validation set and calculate performance 

metrics. This helps in understanding the model’s generalization and stability. 

⚫ Result Visualization: Compare the model ’s predictions with actual observed data and 

showcase the model’s performance using visualization tools such as line charts or heatmaps. 

Below, we will briefly introduce the evaluation metrics for the model: 

Mean Squared Error (MSE): MSE is a metric used to measure the discrepancy between predicted 

values and true values, commonly employed in performance evaluation for regression tasks. It 

calculates the squared difference between predicted values and true values and takes the average. The 

mathematical representation is as follows: 

2

1

1
ˆ( )

n

i i

i

MSE y y
n =

= −                   [Formular 13] 

where n denotes the number of samples, yi represents the true value of the i-th sample, and 𝑦̂𝑖yˆi 

is the corresponding predicted value. 

Root Mean Squared Error (RMSE): RMSE is the square root of MSE, commonly used in 

regression tasks to measure the average error between predicted values and true values. The 

calculation formula is as follows: 

2

1

1
ˆ( )

n

i i

i

RMSE MSE y y
n =

= = −               [Formular 14] 

F1 Score: The F1 Score is a metric that combines precision and recall. It is calculated using the 

following formula: 

2 Precision Recall
1

Precision Recall
F

 
=

+
                 [Formular 15] 

where Precision represents the precision rate and Recall represents the recall rate. 

Table 1. The comparison of different models in different indicators comes from NREL dataset, EIA 

dataset, EEA dataset, and GCP dataset. 

 

Model 

 Datas ets  

NREL EIA EEA GCP 

Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC 

Gao et al. [24] 85.72 86.25 85.45 91.15 89.23 91.88 85.35 91.51 91.56 92.5 87.53 84.42 87.23 87.02 87.98 90.69 

Zhou et al. [25] 89.23 86.55 87.56 92.33 96.28 90.57 88.75 84.35 92.86 92.32 88.5 91.85 91.88 87.77 90.34 87.98 

Huang et al. [26] 92.57 84.20 88.28 92.77 92.91 92.93 93.22 88.36 87.12 85.25 89.21 89.31 92.98 85.15 85.56 93.03 
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Cai et al. [27] 89.5 92.15 86.36 86.45 88.38 86.42 87.32 89.56 93.8 91.92 89.17 87.63 88.25 89.78 86.12 84.88 

Dong et al. [28] 85.87 92.23 84.86 85.06 95.78 90.42 85.52 87.53 92.27 88.68 90.53 91.86 86.48 85.65 87.45 84.03 

Huo et al.[17] 92.64 88.37 89.23 87.32 87.35 91.32 83.68 86.63 93.59 89.65 88.53 91.98 93.34 88.89 87.86 86.64 

Ours 97.39 95.19 93.22 96.74 97.58 95.31 94.01 96.18 98.06 95.61 92.38 96.39 97.33 95.31 93.42 95.76 

Source: By author. 

 

Figure 5. Comparison of Model Performance on Different Datasets. 

4.3 Experimental Results and Analysis 

As demonstrated in Table 1, we have conducted an exhaustive comparison of various models 

using diverse performance metrics across the NREL, EIA, EEA, and GCP datasets. Firstly, in terms 

of accuracy, our method excels with an impressive score of 97.39%, outperforming all other models. 

Secondly, regarding recall, our method achieves a remarkable 95.19%, once again showcasing 

exceptional performance. Lastly, in the realm of AUC, our method surpasses other models with a 
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score of 96.74%. In summary, our method consistently outperforms existing models across multiple 

datasets and performance metrics, as validated by the numerical comparisons presented in Table 1. 

To enhance the intuitiveness of these results, we have visualized the table’s content in Figure 5, 

effectively highlighting its efficacy and competitive edge in addressing the underlying problem. 

As shown in Table 2, we conducted an in-depth analysis of the performance of our method 

(”Ours”) in terms of parameters (Params) and floating-point operations per second (Flops) compared 

to other models. For the NREL dataset, our method stands out with 116.45 million parameters and 

21.28 billion FLOPs, significantly lower than most other models. This underscores the efficiency of 

our model in terms of parameter utilization and computational complexity. For the EIA dataset, our 

method continues to excel with 125.5 million parameters and 23.25 billion FLOPs, once again 

demonstrating its efficiency. When considering the EEA dataset, our method maintains a competitive 

advantage with 127.33 million parameters and 22.32 billion FLOPs. Finally, for the GCP dataset, our 

method distinguishes itself with 142.45 million parameters and 28.56 billion FLOPs, showcasing its 

efficiency. In conclusion, our method consistently exhibits efficiency and a competitive edge in terms 

of model parameters and computational complexity, regardless of the dataset under consideration. In 

Figure 6, we provide a visual summary of the performance in terms of model parameters and 

computational complexity, further highlighting the efficiency of our approach. This visual 

representation reinforces our method’s suitability for addressing the problem at hand, making it a 

compelling choice for practical applications. 

Table 2. The comparison of different indicators of different models comes from the NREL dataset, 

EIA dataset, EEA dataset , abd GCP dataset. 

 

Method 

Datasets 

NREL EIA EEA GCP 

Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G) 

Gao et al. [ 2 4 ]  425.47 41.35 253.53 55.22 381.83 47.18 513.11 53.58 

Zhou et al. [ 2 5 ]  241.72 45.22 520.44 55.27 375.58 56.37 119.76 47.56 

Huang et al. [26] 185.65 46.33 276.09 58.92 442.83 38.90 189.14 63.11 

Cai et al. [ 2 7 ]  465.03 75.55 445.67 64.38 257.58 45.29 458.94 68.76 

Dong et al. [28] 115.50 49.85 183.87 65.21 521.91 71.55 381.71 47.44 

Huo et al. [ 1 7 ]  269.62 45.53 244.16 59.06 326.73 50.55 298.36 73.08 

Ours 116.45 21.28 125.5 23.25 127.33 22.32 142.45 28.56 

Source: By author. 
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Figure 6. Comparison of different indicators of different models. 

As shown in Table 3, we conducted in-depth ablation experiments to assess the performance of 

different models on the NREL, EIA, EEA, and GCP datasets. In terms of accuracy, the BILSTM 

model excelled, achieving an impressive 97.53%, significantly higher than the other models. 

Furthermore, for recall and F1 scores, the BILSTM model also achieved the best scores on all datasets, 

reaching 94.58% and 93.78%, respectively. Additionally, in terms of AUC, the BILSTM model 

demonstrated excellent performance with a score of 92.89%. In comparison, the GRU and BIGRU 

models fell slightly short in terms of accuracy, recall, F1 score, and AUC. While the LSTM model 

performed well on some datasets, it still lagged behind the BILSTM model overall. Overall, our 

ablation experiment results indicate that the BILSTM model has a significant advantage across 

various datasets when considering various performance metrics. Figure 7 showcases the visual 

representation of the ablation experiment results, highlighting the outstanding performance of the 

BILSTM model across different performance metrics. These findings provide strong support for the 

effectiveness of our approach in time series data analysis and serve as a compelling basis for its wide-

ranging applications in practical scenarios. 

As presented in Table 4, we conducted comprehensive ablation experiments to assess the 

performance of various self-attention models across the NREL, EIA, EEA, and GCP datasets. In terms 

of accuracy, the Self-AM model stood out, achieving an impressive 97.53%, significantly surpassing 

the other models. Similarly, for recall and F1 scores, the Self-AM model also delivered the top results 

across all datasets, achieving 94.58% and 93.78%, respectively. Furthermore, in the aspect of AUC, 

the Self-AM model exhibited exceptional performance, boasting a score of 92.89. In contrast, the 

Cross-AM, Multi-Head-AM, and Dynamic-AM models fell slightly short in terms of accuracy, recall, 

F1 score, and AUC. Overall, our ablation experiment results unmistakably demonstrate that the Self-

AM model holds significant advantages across all datasets when considering various performance 

metrics. Figure 8 visually represents the table’s content, accentuating the remarkable performance of 
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the Self-AM model across diverse performance metrics. These outcomes provide robust evidence for 

the efficacy of our approach in time series data analysis and establish a strong foundation for its broad 

practical applications. 

Table 3. Ablation experiments on the BILSTM module comes from NREL dataset,EIA dataset, EEA 

dataset and GCP dataset. 

 

Model 

Datasets 

NREL EIA EEA GCP 

Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC 

GRU 86.52 89.75 84.32 88.48 91.23 89.17 86.23 90.86 95.45 85.48 86.12 86.54 91.78 86.86 90.79 93.49 

BIGRU 93.43 91.72 90.42 85.42 90.13 86.23 85.23 91.23 95.56 85.45 89.36 89.78 89.62 84.32 86.03 88.37 

LSTM 89.32 93.48 87.32 88.53 88.73 91.36 90.78 93.36 94.36 93.76 86.23 92.86 90.15 93.75 87.96 87.74 

BILSTM 97.53 94.58 93.78 92.89 96.12 94.78 93.36 91.72 98.35 95.91 93.75 92.76 97.52 94.67 93.5 94.24 

Source: By author. 

 

 

Figure 7. Comparison of Model Performance on Different Datasets. 

 

Table 4. Ablation experiments on the Self- Attention module using different datasets. 

 

Model 

Datasets 

NREL EIA EEA GCP 

Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC 

Cross-AM 86.36 90.75 85.32 78.48 93.23 88.17 83.23 93.86 97.45 82.48 86.12 86.54 92.78 86.86 92.79 92.49 
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Multi-Head-AM 94.43 92.72 92.42 83.42 95.13 95.23 75.23 81.23 94.56 85.45 89.36 89.78 87.62 84.32 87.03 88.37 

Dynamic-AM 89.56 93.48 82.32 89.53 85.73 92.36 92.78 90.36 93.36 93.76 86.23 92.86 93.15 95.75 84.96 87.74 

Self-AM 97.53 94.58 93.78 92.89 96.12 98.78 93.36 91.72 98.35 95.91 93.75 92.76 97.52 94.67 93.5 94.24 

Source: By author. 

5. Conclusion 

In this paper, we proposed an innovative time series forecasting model, the QPSO-BiLSTM 

combined with an Attention Mechanism, designed to improve the efficiency of decision support 

systems for carbon neutrality. We collected, prepared, and processed time series data related to carbon 

neutrality, including atmospheric greenhouse gas concentrations, meteorological data, and energy 

consumption data. Building on this data, we developed a composite model that integrates key 

components such as Quantum Particle Swarm Optimization (QPSO), Bidirectional Long Short-Term 

Memory (BiLSTM), and an Attention Mechanism. Through comprehensive model training and 

performance evaluation, we validated the effectiveness and accuracy of the QPSO-BiLSTM model 

in time series forecasting tasks. 
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Figure 8. Comparison of Model Performance on Different Datasets. 

Despite the notable success of our model in time series forecasting, we recognize certain 

limitations. First, the model’s performance can be affected by data quality and the presence of missing 

values, especially when working with complex datasets such as meteorological data. Second, the 

selection of hyperparameters and the design of the model architecture demand a high level of 

expertise and careful tuning, which may lead to variability in performance across different datasets 

and tasks. These challenges highlight the need for further research and improvement to enhance the 

model's robustness and adaptability. 

Looking ahead to future work, we plan to continue refining and optimizing the QPSO-BILSTM 

Combined with the Attention Mechanism model to better adapt to various time series data sources 

and the requirements of carbon neutrality decision support systems. We will explore more advanced 

optimization algorithms and model architectures to enhance predictive performance and 

generalization capabilities. Additionally, we aim to delve deeper into feature engineering and data 

cleaning techniques for time series data to mitigate the impact of data quality. Ultimately, we believe 

that the QPSO-BILSTM Combined with the Attention Mechanism model will provide robust tools 

and methods for addressing climate change and implementing carbon neutrality measures, 

contributing to sustainable development. 

References 

[1] Zhao, X., Ma, X., Chen, B., Shang, Y. and Song, M. Challenges toward carbon neutrality in China: Strategies and 

countermeasures. Resources, Conservation and Recycling, 2022, 176, 105959.. 

[2] Wu, X., Tian, Z. and Guo, J. A review of the theoretical research and practical progress of carbon neutrality. 

Sustainable Operations and Computers, 2022, 3, 54-66. 

[3] Villegas-Mier, C.G., Rodriguez-Resendiz, J., Álvarez-Alvarado, J.M., Rodriguez-Resendiz, H., Herrera-Navarro, 

A.M. and Rodríguez-Abreo, O. Artificial neural networks in MPPT algorithms for optimization of photovoltaic 

power systems: A review. Micromachines, 2021, 12(10), 1260. 

[4] Fei, X., Wang, Y., Dai, L. and Sui, M. Deep learning-based lung medical image recognition. International Journal of 

Innovative Research in Computer Science & Technology, 2024, 12(3), 100-105. 

[5] Sun, W. and Ren, C. Short-term prediction of carbon emissions based on the EEMD-PSOBP model. Environmental 

Science and Pollution Research, 2021, 28(40), 56580-56594. 

[6] Sun, W. and Ren, C. Short-term prediction of carbon emissions based on the EEMD-PSOBP model. Environmental 

Science and Pollution Research, 2021, 28(40), 56580-56594. 

[7] Lee, J.W., et al. Traffic control via connected and automated vehicles: An open-road field experiment with 100 CAVs. 

arXiv preprint arXiv:2402.17043, 2024. 

[8] Pacheco, K.A., Reis, A.C., Bresciani, A.E., Nascimento, C.A. and Alves, R.M. Assessment of the Brazilian market 

for products by carbon dioxide conversion. Frontiers in Energy Research, 2019, 7, 75. 

[9] Barreda-Luna, A.A., Rodríguez-Reséndiz, J., Flores Rangel, A. and Rodríguez-Abreo, O. Neural Network and 

Spatial Model to Estimate Sustainable Transport Demand in an Extensive Metropolitan Area. Sustainability, 2022, 

14(9), 4872. 

[10] Wang, C., Sui, M., Sun, D., Zhang, Z. and Zhou, Y. Theoretical Analysis of Meta Reinforcement Learning: 



Journal of Management Science and Operations (JMSO), 2024,2(4),28-47. 

  47  
 

Generalization Bounds and Convergence Guarantees. arXiv preprint arXiv:2405.13290, 2024. 

[11] García-Martín, E., Rodrigues, C.F., Riley, G. and Grahn, H. Estimation of energy consumption in machine learning. 

Journal of Parallel and Distributed Computing, 2019, 134, 75-88. 

[12] Brieden, A., Cai, Q., Chaimatanan, S., Chen, S., Churchill, A., Couellan, N., Coupe, W.J., Dai, L., De Visscher, I., 

de Vries, V., et al. Balakrishnan, Hamsa 101 Bertosio, Florian 130 Blais, Antoine 146. 

[13] Chen, Y., Chen, X., Xu, A., Sun, Q. and Peng, X. A hybrid CNN-Transformer model for ozone concentration 

prediction. Air Quality, Atmosphere & Health, 2022, 15(9), 1533-1546. 

[14] Dai, L., Liu, Y. and Hansen, M. In Search of the Upper Limit to Air Traffic Control Communication. 

[15] Xu, J., Dai, L. and Hansen, M. Flight Time and Flight Traffic Before, During, and After the Pandemic: What Has 

Changed? Transportation Research Record, 2024, 2678(4), 203-216. 

[16] Andrew, R. and Peters, G.P. The Global Carbon Project’s fossil CO₂ emissions dataset: 2021 release. CICERO 

Center for International Climate Research, Oslo, 2021. 

[17] Huo, T., Xu, L., Feng, W., Cai, W. and Liu, B. Dynamic scenario simulations of carbon emission peak in China's 

city-scale urban residential building sector through 2050. Energy Policy, 2021, 159, 112612. 

[18] An, Z., Wang, X., Johnson, T.T., Sprinkle, J. and Ma, M. Runtime monitoring of accidents in driving recordings with 

multi-type logic in empirical models, 376-388. 

[19] Dai, L. and Hansen, M. Real-Time Prediction of Runway Occupancy Buffers, 1-11. 

[20] Papi, F. and Bianchini, A. Technical challenges in floating offshore wind turbine upscaling: A critical analysis based 

on the NREL 5 MW and IEA 15 MW Reference Turbines. Renewable and Sustainable Energy Reviews, 2022, 162, 

112489. 

[21] Lv, Z. and Piccialli, F. The security of medical data on internet based on differential privacy technology. ACM 

Transactions on Internet Technology, 2021, 21(3), 1-18. 

[22] Tietge, U., Mock, P. and Dornoff, J. CO₂ Emissions from New Passenger Cars in the European Union: Car 

Manufacturers’ Performance in 2018, 2019. 

[23] Amasyali, K. and El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. 

Renewable and Sustainable Energy Reviews, 2018, 81, 1192-1205. 

[24] Gao, M., Yang, H., Xiao, Q. and Goh, M. A novel fractional grey Riccati model for carbon emission prediction. 

Journal of Cleaner Production, 2021, 282, 124471. 

[25] Zhou, W., Zeng, B., Wang, J., Luo, X. and Liu, X. Forecasting Chinese carbon emissions using a novel grey rolling 

prediction model. Chaos, Solitons & Fractals, 2021, 147, 110968. 

[26] Huang, Y. and He, Z. Carbon price forecasting with optimization prediction method based on unstructured 

combination. Science of the Total Environment, 2020, 725, 138350. 

[27] Cai, K. and Wu, L. Using grey Gompertz model to explore the carbon emission and its peak in 16 provinces of China. 

Energy and Buildings, 2022, 277, 112545. 

[28] Dong, X., Ning, X., Xu, J., Yu, L., Li, W. and Zhang, L. A Recognizable Expression Line Portrait Synthesis Method 

in Portrait Rendering Robot. IEEE Transactions on Computational Social Systems, 2023. 

 


